研究生: |
廖威任 Liao, Wei-Jen |
---|---|
論文名稱: |
二維鈣鈦礦/氧化鋅奈米柱異質結構應用於光感測與氣體感測 Two-Dimensional Layered Perovskite/Zinc Oxide Nanorod Heterostructures for Dual Light and Gas Sensing |
指導教授: |
徐旭政
Hsu, Hsu-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 201 |
中文關鍵詞: | 鈣鈦礦 、氧化鋅 、奈米柱 、光感測器 、氣體感測器 |
外文關鍵詞: | Perovskite, Zinc oxide, Nanorods, Photodetector, Gas sensor |
相關次數: | 點閱:83 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近期,二維層狀鈣鈦礦材料因其優異的光電性能、熱穩定性、化學穩定性和環境穩定性,廣泛應用在各種光電元件如:太陽能電池、發光二極管、光偵測器器等。在本研究中,我們將2D Ruddlesden-Popper鈣鈦礦(PEA2PbI4)與氧化鋅 (ZnO)奈米柱(NRs)結合,用於雙重光和氣體感測應用。通過調整鈣鈦礦前驅溶液中DMSO和GBL的溶劑體積比來製備PEA2PbI4,我們利用SEM、XRD、PL、UV-Vis以及光響應測量進行了材料與元件表現分析。結果顯示,使用純GBL溶劑製備的PEA2PbI4鈣鈦礦前驅溶液並沉積於ZnO奈米柱上的元件達到了最佳的光感測能力。通過進一步優化PEA2PbI4的莫爾濃度至1.25 M,基於PEA2PbI4/ZnO奈米柱的元件在綠光照射下的光靈敏度遠超過純ZnO奈米柱元件,達到了2246倍。此外,在綠光照射的輔助下,基於PEA2PbI4/ZnO奈米柱元件在室溫下對CO氣體顯示出有效的檢測效果,靈敏度約為2.3%。雙重光和氣體感測器在未來市場中預計具有高度競爭力,顯示出其在實際應用中的巨大潛力。
Recently, two-dimensional (2D) layered perovskite materials have garnered significant attention for their applications in various optoelectronic devices, such as solar cells, light-emitting diodes, photodetectors, and others, due to their excellent optoelectronic, thermal, chemical, and environmental stability. In this study, we integrated 2D Ruddlesden-Popper perovskite (PEA2PbI4) with zinc oxide (ZnO) nanorods (NRs) for the application of dual light and gas sensing. By adjusting the solvent volume ratio of DMSO and GBL for the fabrication of PEA2PbI4, we conducted a series of evaluations using SEM, XRD, PL, UV-Vis, and light response measurements. Our findings revealed that the device with PEA2PbI4 prepared using pure GBL solvent deposited onto the ZnO NRs achieved the best photosensing capability. Through further optimization of the concentration of PEA2PbI4 to 1.25 M, the PEA2PbI4/ZnO NRs-based device exhibited a photosensitivity of 2246 times for green light, surpassing that of pure ZnO NRs-based device. Additionally, with the aid of green light illumination, the PEA2PbI4/ZnO NRs-based device demonstrated effective CO gas detection at room temperature, yielding a sensitivity of approximately 2.3%. Dual light and gas sensors are expected to be highly competitive in future markets, underscoring their promising potential for practical applications.
1 Li, M.-H. et al. Enhancing broad-band light and CO gas sensing with BDT/ZnO nanocomposites. Results in Physics 56 (2024).
2 Li, M.-H. et al. A Broad Spectral Photodetector Using Organic Bisindolo Quinoxaline on ZnO Nanorods. Chemosensors 11 (2023).
3 Kumar, M., Raj, A., Kumar, A. & Anshul, A. Theoretical evidence of high power conversion efficiency in double perovskite solar cell device. Optical Materials 111 (2021).
4 Qin, F. et al. Design of high efficiency perovskite solar cells based on inorganic and organic undoped double hole layer. Solar Energy 262 (2023).
5 Kim, J. Y., Lee, J. W., Jung, H. S., Shin, H. & Park, N. G. High-Efficiency Perovskite Solar Cells. Chem Rev 120, 7867-7918 (2020).
6 Goel, P. et al. Perovskite materials as superior and powerful platforms for energy conversion and storage applications. Nano Energy 80 (2021).
7 Kumar, M., Raj, A., Kumar, A. & Anshul, A. An optimized lead-free formamidinium Sn-based perovskite solar cell design for high power conversion efficiency by SCAPS simulation. Optical Materials 108 (2020).
8 Li, M. et al. High-Efficiency Perovskite Solar Cells with Improved Interfacial Charge Extraction by Bridging Molecules. Adv Mater 36, e2406532 (2024).
9 Dunfield, S. P. et al. From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules. Advanced Energy Materials 10 (2020).
10 Li, B., Li, Y., Zheng, C., Gao, D. & Huang, W. Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Advances 6, 38079-38091 (2016).
11 Bisquert, J. & Juarez-Perez, E. J. The Causes of Degradation of Perovskite Solar Cells. J Phys Chem Lett 10, 5889-5891 (2019).
12 Peng, Z. et al. Revealing degradation mechanisms in 3D/2D perovskite solar cells under photothermal accelerated ageing. Energy & Environmental Science 17, 8313-8324 (2024).
13 Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chem Rev 119, 3418-3451 (2019).
14 Sutanto, A. A. et al. In Situ Analysis Reveals the Role of 2D Perovskite in Preventing Thermal-Induced Degradation in 2D/3D Perovskite Interfaces. Nano Lett 20, 3992-3998 (2020).
15 Leung, T. L. et al. Stability of 2D and quasi-2D perovskite materials and devices. Communications Materials 3 (2022).
16 Shao, M. et al. Over 21% Efficiency Stable 2D Perovskite Solar Cells. Adv Mater 34, e2107211 (2022).
17 Yu, H. et al. Thermal and Humidity Stability of Mixed Spacer Cations 2D Perovskite Solar Cells. Adv Sci (Weinh) 8, 2004510 (2021).
18 Zhao, X., Liu, T. & Loo, Y. L. Advancing 2D Perovskites for Efficient and Stable Solar Cells: Challenges and Opportunities. Adv Mater 34, e2105849 (2022).
19 Karpinska, M. et al. Interlayer excitons in MoSe(2)/2D perovskite hybrid heterostructures - the interplay between charge and energy transfer. Nanoscale 14, 8085-8095 (2022).
20 Zhang, J., Zhu, X., Wang, M. & Hu, B. Establishing charge-transfer excitons in 2D perovskite heterostructures. Nat Commun 11, 2618 (2020).
21 Zhang, Y. et al. Controllable Magnetic Proximity Effect and Charge Transfer in 2D Semiconductor and Double-Layered Perovskite Manganese Oxide van der Waals Heterostructure. Adv Mater 32, e2003501 (2020).
22 Han, J. et al. Recent Progress in 2D Inorganic/Organic Charge Transfer Heterojunction Photodetectors. Advanced Functional Materials 32 (2022).
23 M. Vaseem, A. U., and Y.-B. Hahn. ZnO nanoparticles: growth, properties, and applications," Metal Oxide Nanostructures and Their Applications 5 (2010).
24 Attfield, J. P., Lightfoot, P. & Morris, R. E. Perovskites. Dalton Trans 44, 10541-10542 (2015).
25 Zhou, J. & Huang, J. Photodetectors Based on Organic-Inorganic Hybrid Lead Halide Perovskites. Adv Sci (Weinh) 5, 1700256 (2018).
26 Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society 131, 6050-6051 (2009).
27 Kumar, A. et al. Enhanced efficiency and stability of electron transport layer in perovskite tandem solar cells: Challenges and future perspectives. Solar Energy 266 (2023).
28 Sarritzu, V. et al. Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites. Sci Rep 7, 44629 (2017).
29 Diouf, B., Muley, A. & Pode, R. Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications. Energies 16 (2023).
30 Chen, J. & Park, N. G. Causes and Solutions of Recombination in Perovskite Solar Cells. Adv Mater 31, e1803019 (2019).
31 Wu, G. et al. Surface Passivation Using 2D Perovskites toward Efficient and Stable Perovskite Solar Cells. Adv Mater 34, e2105635 (2022).
32 Gong, J., Hao, M., Zhang, Y., Liu, M. & Zhou, Y. Layered 2D Halide Perovskites beyond the Ruddlesden-Popper Phase: Tailored Interlayer Chemistries for High-Performance Solar Cells. Angew Chem Int Ed Engl 61, e202112022 (2022).
33 Li, M.-H. et al. Perovskite Capped ZnO Nanorods Ultraviolet/Visible Broadband Photodetectors. IEEE Transactions on Nanotechnology 21, 499-504 (2022).
34 Peng, Y. et al. High-performance UV–visible photodetectors based on ZnO/perovskite heterostructures. Journal of Alloys and Compounds 965 (2023).
35 Yan, J. et al. Reconfigurable self-powered imaging photodetectors by reassembling and disassembling ZnO/perovskite heterojunctions. Journal of Materials Chemistry C 10, 8922-8930 (2022).
36 Shen, W., Jung, U., Xian, Z., Jung, B. & Park, J. Enhanced device performance of Cs2AgBiBr6 double perovskite photodetector by SnO2/ZnO double electron transport layer. Journal of Alloys and Compounds 929 (2022).
37 Tang, J.-F. et al. Perovskite Quantum Dot–ZnO Nanowire Composites for Ultraviolet–Visible Photodetectors. ACS Applied Nano Materials 5, 7237-7245 (2022).
38 Wang, H., Zhang, P. & Zang, Z. High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Applied Physics Letters 116 (2020).
39 Liu, S. et al. High Performance 0D ZnO Quantum Dot/2D (PEA)(2)PbI(4) Nanosheet Hybrid Photodetectors Fabricated via a Facile Antisolvent Method. Nanomaterials (Basel) 12 (2022).
40 Lai, L., Liu, G., Zhou, Y., He, X. & Ma, Y. Modulating Dimensionality of 2D Perovskite Layers for Efficient and Stable 2D/3D Perovskite Photodetectors. ACS Appl Mater Interfaces 16, 19849-19857 (2024).
41 Jiang, L., Li, Z., Dong, Q., Rong, X. & Dong, G. 2D/3D Perovskite Photodetectors with High Response Frequency and Improved Stability Based on Thiophene-2-ethylamine and Dual Additives. ACS Appl Mater Interfaces 15, 32647-32655 (2023).
42 Syue, Y.-K., Hsu, K.-C., Fang, T.-H., Lee, C.-I. & Shih, C.-J. Characteristics and gas sensor applications of ZnO-Perovskite heterostructure. Ceramics International 48, 12585-12591 (2022).
43 Qin, W., Yuan, Z., Gao, H., Zhang, R. & Meng, F. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sensors and Actuators B: Chemical 341 (2021).
44 Chizhov, A. S. et al. Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals. Sensors and Actuators B: Chemical 329 (2021).
45 Xu, X. et al. Ambient Stable CsPbBr3/ZnO Nanostructures for Ethanolamine Sensing. ACS Applied Nano Materials 5, 15030-15041 (2022).
46 Xuan, W. et al. In-situ synthesis of stable ZnO-coated CsPbBr3 nanocrystals for room-temperature heptanal sensors. Materials Today Chemistry 26 (2022).
47 Xuan, W. et al. Machine Learning-Assisted Sensor Based on CsPbBr(3)@ZnO Nanocrystals for Identifying Methanol in Mixed Environments. ACS Sens 8, 1252-1260 (2023).
48 Lu, J. et al. Layer number dependent exciton dissociation and carrier recombination in 2D Ruddlesden–Popper halide perovskites. Journal of Materials Chemistry C 9, 8966-8974 (2021).
49 Dyksik, M. et al. Tuning the Excitonic Properties of the 2D (PEA)(2)(MA)(n-1)Pb(n)I(3n+1) Perovskite Family via Quantum Confinement. J Phys Chem Lett 12, 1638-1643 (2021).
50 Blancon, J. C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat Commun 9, 2254 (2018).
51 Gelvez-Rueda, M. C. et al. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites. J Phys Chem C Nanomater Interfaces 121, 26566-26574 (2017).
52 Ou, L. X., Liu, M. Y., Zhu, L. Y., Zhang, D. W. & Lu, H. L. Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. Nanomicro Lett 14, 206 (2022).
53 Xue, S., Cao, S., Huang, Z., Yang, D. & Zhang, G. Improving Gas-Sensing Performance Based on MOS Nanomaterials: A Review. Materials (Basel) 14 (2021).
54 Chen, H., Yan, H. & Cai, Y. Effects of Defect on Work Function and Energy Alignment of PbI2: Implications for Solar Cell Applications. Chemistry of Materials 34, 1020-1029 (2022).
55 Akbulatov, A. F. et al. The impact of ZnO on the stability of perovskite films and solar cells: Surface chemistry rules the game! Materials Today Energy 47 (2025).
56 Zang, L. et al. Emerging Trends in Electron Transport Layer Development for Stable and Efficient Perovskite Solar Cells. Small 20, e2400807 (2024).
57 Apergi, S., Brocks, G., Tao, S. & Olthof, S. Probing the Reactivity of ZnO with Perovskite Precursors. ACS Appl Mater Interfaces 16, 14984-14994 (2024).
58 Xia, Y. et al. Solvent strategies toward high-performance perovskite light-emitting diodes. Journal of Materials Chemistry C 10, 3276-3286 (2022).
59 McMeekin, D. P. et al. Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat Mater 22, 73-83 (2023).
60 Wang, Y., Zhong, M. & Chai, L. Effects of the concentration of PbI2 and CH3NH3I on the perovskite films and the performance of perovskite solar cells based on ZnO-TiO2 nanorod arrays. Superlattices and Microstructures 123, 189-200 (2018).
61 Haque, F., Hasan, M. M., Bestelink, E., Sporea, R. A. & Mativenga, M. Composition‐Dependent High‐Performance Phototransistors Based on Solution Processed CH3NH3PbI3/ZnO Heterostructures. Advanced Optical Materials 11 (2023).
62 Li, M. et al. Ultrathin Nanosheets of Oxo‐functionalized Graphene Inhibit the Ion Migration in Perovskite Solar Cells. Advanced Energy Materials 10 (2019).
63 Bian, Z. K. et al. Removal of Residual Additive Enabling Perfect Crystallization of Photovoltaic Perovskites. Angew Chem Int Ed Engl, e202416887 (2024).
64 Yin, J. et al. Modulation of Broadband Emissions in Two-Dimensional ⟨100⟩-Oriented Ruddlesden–Popper Hybrid Perovskites. ACS Energy Letters 5, 2149-2155 (2020).
65 Kowal, D. et al. PEA2PbI4: fast two-dimensional lead iodide perovskite scintillator with green and red emission. Materials Today Chemistry 29 (2023).
66 Yang, J. et al. Accelerating Materials Discovery by High‐Throughput GIWAXS Characterization of Quasi‐2D Formamidinium Metal Halide Perovskites. Advanced Functional Materials 34 (2024).
67 Steele, J. A. et al. How to GIWAXS: Grazing Incidence Wide Angle X‐Ray Scattering Applied to Metal Halide Perovskite Thin Films. Advanced Energy Materials 13 (2023).
68 Wright, N. E. et al. Influence of Annealing and Composition on the Crystal Structure of Mixed-Halide, Ruddlesden–Popper Perovskites. Chemistry of Materials 34, 3109-3122 (2022).