簡易檢索 / 詳目顯示

研究生: 陳明德
Chen, Min-Te
論文名稱: 整合感應供電技術之電漿激發系統研製與實現
Design and Implementation of a Plasma Ignition System With Integrated Inductively Coupled Power Transfer Technique
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 49
中文關鍵詞: 電漿驅動感應耦合無能傳輸諧振增益特性分析回授控制
外文關鍵詞: Plasma ignition, inductively coupled power transfer, resonant gain analysis, feedback control
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在提出整合感應供電技術之電漿激發系統,並融入感應電能傳輸
    作為系統電力來源。本文考量現有電漿激發系統若能加入彈性調整諧振電壓增益,將有助於擴展應用領域,因此提出基於諧振槽、諧振迴授電路以及電漿負載之統整,進而建構新型的諧振驅動電路,並且輔以諧振變壓器端之回授補償電容調整,具有彈性調整系統電壓轉換增益之能力。此外,本論文加入感應線圈之電能傳輸機制,實現雙迴路線圈傳遞電力,可同時俾於提昇電漿電源之供電可靠度。而為了證實本系統之可行性,本文經由電路模擬與系統諧振增益分析佐證,並藉由硬體雛型加以電漿實測,測試結果顯示此電漿激發系統及非接觸電力傳輸機制有助於提昇電漿電源應用便利性,研究心得可提供電漿產業設計及應用參考。

    This thesis aims to propose a plasma ignition system with the integrated inductively coupled power transfer technique, by which the inductive power transfer is served as the power source. Considering the extension of plasma applications following the inclusion of the resonant voltage gain adjustment, the proposed system is constructed based on the integration of resonant tank, resonant feedback circuit and a plasma load. Furthermore, by adding the feedback compensation capacitors at resonant transformer side, the circuit is enhanced with a higher flexibility of the tuning of voltage transfer gain. Subsequently, the study also realizes the inductively coupled power transfer, by which the dual-loop power transfer supplies the plasma ignition with a higher reliability. In order to confirm the practicality of the proposed system, this study has been verified by circuit simulation and resonant-gain analysis. The hardware prototype is also made with measurements. The results gained from these tests and measurements reveal the increased convenience of plasma power source through the plasma ignition system and contactless power transfer mechanism, presenting a beneficial reference for plasma industry design and applications.

    目錄 中文摘要 .................... I 英文摘要 ..................... II 致謝 ..................... V 目錄..................... VI 圖目錄 ..................... VIII 第一章 緒論 ................... 1 1-1 研究背景與動機 ................. 1 1-2 研究方法及目的 ................. 3 1-3 內容大綱 ................... 4 第二章 感應傳能電漿系統設計及分析 ............. 6 2-1 前言 ................... 6 2-2 感應電力傳輸電路架構 ............... 7 2-3 電漿激發驅動電路架構 ............... 8 2-4 系統電路原理分析 ................ 11 2-4-1 感應線圈耦合特性 ............... 11 2-4-2 電漿電路操作時序 ............... 14 第三章 系統電路諧振與轉換分析 .............. 20 3-1 感應電力傳輸之諧振電路............. 20 3-1-1 阻抗特性 ................... 20 3-1-2 轉換增益 ................... 21 3-2 電漿驅動電路之諧振分析............. 23 3-2-1 諧振電路特性 ................. 24 3-2-2 電壓轉換增益 ................. 26 3-2-3 輸入阻抗與相位分析 ............... 29 3-2-4 電流回授控制增益 ............... 30 第四章 系統測試結果 ................ 32 4-1 簡介 .................... 32 4-2 感應電力傳輸電路功能測試 ............. 32 4-3 電漿驅動電路功能測試 .............. 38 第五章 結論與未來研究方向 .............. 43 5-1 結論 .................... 43 5-2 未來研究方向 ................ 44 參考文獻 ..................... 45

    參考文獻
    [1] M. T. C. Fang, J. L. Zhang, and J. D. Yan, “On the Use of Langmuir Probes for the Diagnosis of Atmospheric Thermal Plasmas,” IEEE Transactions on Plasma Science, vol. 33, no. 4, pp. 1431-1442, Aug. 2005. [2] D. Xiao, C. Cheng, Y. Lan, G. H. Ni, J. Shen, Y. D. Meng, and P. K. Chu, “Effects of Atmospheric-Pressure Nonthermal Nitrogen and Air Plasma on Bacteria Inactivation, “IEEE Transactions on Plasma Science, vol. 44, no. 11, pp. 2699-2707, Nov. 2016. [3] F. Mitsugi, T. Abiru, T. Ikegami, K. Ebihara, and K. Nagahama, “Treatment of Nematode in Soil Using Surface Barrier Discharge Ozone Generator,” IEEE Transactions on Plasma Science, vol. 45, no. 12, pp. 3076-3081, Dec 2017. [4] H. J. Kim and S. H. Hong, “Comparative Measurements on Thermal Plasma Jet Characteristics in Atmospheric and Low-Pressure Plasma Sprayings,” IEEE Transactions on Plasma Science, vol. 23, no. 5, pp. 852-859, Oct. 1995. [5] K. Fricke, K. Duske, A. Quade, B. Nebe, K. Schroder, K. D. Weltmann, and T. Woedtke, “Comparison of Nonthermal Plasma Processes on the Surface Properties of Polystyrene and Their Impact on Cell Growth,” IEEE Transactions on Plasma Science, vol. 40, no. 11, pp. 2970-2979, Nov. 2012. [6] K. Liu, Q. Hu, J. Qiu, and H. Xiao, “A High Repetition Rate Nanosecond Pulsed Power Supply for Nonthermal Plasma Generation,” IEEE Transactions on Plasma Science, vol. 33, no. 4, pp. 1182-1185, Aug. 2005. [7] S. Mori, K. Ogawa, H. Oishi, T. Suzuki, M. Tomita, M. Bairo, Y. Fukuzaki, and H. Ohnuma, “Monitoring Test Structure for Plasma Process-Induced Charging Damage Using Charge-Based Capacitance Measurements,” IEEE Transactions on Semiconductor Manufacturing, vol. 29, no. 3, pp. 185-192, Aug. 2016. [8] Fukuzaki, and H. Ohnuma, “Monitoring Test Structure for Plasma Process-Induced Charging Damage Using Charge-Based Capacitance Measurements,” IEEE Transactions on Semiconductor Manufacturing, vol. 29, no. 3, pp. 185-192, Aug. 2016. [9] T. Tsutsumi, Y. Fukunaga, K. Ishikawa, K. Takeda, H. Kondo, T. Ohta, M. Ito, M. Sekine, and M. Hori, “Feedback Control System of Wafer Temperature for Advanced Plasma Processing and its Application to Organic Film Etching,” IEEE Transactions on Semiconductor Manufacturing, vol. 28, no. 4, pp. 515-520, Nov. 2015. [10] C. M. Liu, Y. Nishida, K. Iwasaki, and K. Ting, “Prolonged Preservation and Sterilization of Fresh Plants in Controlled Environments Using High-Field Plasma,” IEEE Transactions on Plasma Science, vol. 39, no. 2, pp. 717-724, Feb. 2011. [11] D. Xiao, C. Cheng, Y. Lan, G. H. Ni, J. Shen, Y. D. Meng, and P. K. Chu, “Effects of Atmospheric-Pressure Nonthermal Nitrogen and Air Plasma on Bacteria Inactivation,” IEEE Transactions on Plasma Science, vol. 44, no. 11, pp. 2699-2707, Nov. 2016. [12] S. Mori, K. Ogawa, H. Oishi, T. Suzuki, M. Tomita, M. Bairo, Y. Fukuzaki, and H. Ohnuma, “Monitoring Test Structure for Plasma Process-Induced Charging Damage Using Charge-Based Capacitance Measurements,” IEEE Transactions on Semiconductor Manufacturing, vol. 29, no. 3, pp. 185-192, Aug. 2016. [13] Y. N. Chang, H. L. Cheng, C. A. Cheng, C. H. Chang, and Y. H. Lin, “An LFPWM
    Dimmed LED Driver Featuring High Power Factor,” IEEE International Conference on Industrial Technology, Seville, Spain, March 2015.
    [14] X. Wei, H. Sekiya, T. Nagashima, M. Kazimierczuk, and T. Suetsugu, “Steady-State Analysis and Design of Class-D ZVS Inverter at Any Duty Ratio,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 394-405, Jan. 2016. [15] J. W. Kim, J. K. Han, and J. S. Lai, “APWM Adapted Half-Bridge LLC Converter with Voltage Doubler Rectifier for Improving Light Load Efficiency,” Electronics Letters, vol. 53, no. 5, pp. 339-341, March 2017. [16] T. Opalinska, B. Ulejczyk, and K. Schmidt-Szalowski, “Applications of Pulsed Discharge to Thin-Film Deposition,” IEEE Transactions on Plasma Science, vol. 37, no. 6, pp. 934-940, June 2009. [17] F. S. Pai, S. J. Huang, and T. S. Lee, “Design of a PT-Based Resonant Inverter for Ozone Generation with Flexible Capacity Operations,” IEEE 10th International Conference on Power Electronics and Drive Systems, Kitakyushu, Japan, pp. 1241-1244, Apr. 2013. [18] A. Zaheer, G. A. Covic, and D. Kacprzak, “A Bipolar Pad in a 10-kHz 300-W Distributed IPT System for AGV Applications,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 7, pp. 3288-3301, July 2014. [19] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, “Compact Contactless Power Transfer System for Electric Vehicles,” IEEE International Power Electronics Conference, Sapporo, Japan, pp. 807-813, June 2010. [20] S. A. Saleh, B. Allen, E. Ozkop, and B. G. Colpitts, “Multistage and Kultilevel Power Electronic Converter-Based Power Supply for Plasma DBD Devices,” IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5466-5475, July 2018. [21] T. S. Lee, S. J. Huang, K. C. Huang, and P. J. Chiang, “Modular Design and Analysis of Plasma-Driven System with Integrated Resonant Circuit and Capacity Expansion Mechanism,” IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1226-1234, February 2018. [22] X. Wei, H. Sekiya, T. Nagashima, M. Kazimierczuk, and T. Suetsugu,” Steady-State Analysis and Design of Class-D ZVS Inverter at Any Duty Ratio,” IEEE Transactions on Plasma Science, vol. 31, no. 1, pp. 394-405, Jan. 2016. [23] Y. Yamada, T. Nagashima, Y. Ibuki, Y. Fukumoto, T. Ikenari and, H. Sekiya, “Design of a DC-DC Converter With Phase-Controlled Class-D ZVS Inverter,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 5, no. 3, pp. 354-363, Sept. 2015. [24] B. Yi, Y. Pan, Y. Ding, M. Zhang, B. Rao, H. Xu, and M. Li, “An Application of Two-Phase Resonant Inverter System to Generate Rotating Magnetic Field for Plasma Instability Control in a Tokamak,” IEEE Transactions on Plasma Science, vol. 43, no. 2, pp. 594-602, Feb. 2015. [25] J. A. López-Fernández, R. Peña-Eguiluz, R. López-Callejas, A. Mercado-Cabrera, B. Jaramillo-Sierra, B. Rodríguez-Mendez, R. Valencia-Alvarado, and A. E. Muñoz-Castro, “A 10- to 30-kHz Adjustable Frequency Resonant Full-Bridge Power Converter,” IEEE Transactions on Industrial Electronicszz, vol. 62, no. 4, pp. 2215-2223, Apr. 2015. [26] F. S. Pai, C. L. Ou, and S. J. Huang, “Plasma-Driven System Circuit Design With Asymmetrical Pulsewidth Modulation Scheme,” IEEE Transactions on Industrial
    Electronics, vol. 58, no. 9, pp. 4167-4174, Sept. 2011.
    [27] M. Ponce-Silva, J. A. Aqui, V. H. Olivares-Peregrino, and M. A. Oliver-Salazar, “Assessment of the Current-Source, Full-Bridge Inverter as Power Supply for Ozone Generators With High Power Factor in a Single Stage,” IEEE Transactions on Power Electronics, vol. 31, no. 12, pp. 8195-8204, Dec. 2016. [28] M. Ponce-Silva, J. A. Aqui, V. H. Olivares-Peregrino, and M. A. Oliver-Salazar, “Assessment of the Current-Source, Full-Bridge Inverter as Power Supply for Ozone Generators With High Power Factor in a Single Stage,” IEEE Transactions on Power Electronics, vol. 31, no. 12, pp. 8195-8204, Dec. 2016. [29] K. H. Park and K. H. Yi, “A Wide Load Range ZVS Dual Half-Bridge Converters for Large-Sized PDP Sustaining Power Modules,” Journal of Display Technology, vol. 11, no. 1, pp. 86-96, Jan. 2015. [30] M. Amjad and Z. Salam, “Design and Implementation of a High-Frequency LC-Based Half-Bridge Resonant Converter for Dielectric Barrier Discharge Ozone Generator,” IET Power Electronics, vol. 7, no. 9, pp. 2403-2411, Sept. 2014. [31] D. G. Bandeira, T. B. Lazzarin, and I. Barbi, “High Voltage Power Supply Using T-Type Parallel Resonant DC-DC Converter,” IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2459-2470, May/June 2018. [32] M. Kim, H. Jeong, B. Han, and S. Choi, “New Parallel Loaded Resonant Converter With Wide Output Voltage Range,” IEEE Transactions on Power Electronics, vol. 33, no. 4, pp. 3106-3114, April 2018. [33] S. H. Lee, H. J. Choe, and B. Kang, “Quasi-Resonant Passive Snubber for Improving Power Conversion Efficiency of a DC-DC Step-Down Converter,” IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 2026-2034, March 2018. [34] Y. Yamada, T. Nagashima, Y. Ibuki, Y. Fukumoto, T. Ikenari and, H. Sekiya, “Design of a DC-DC Converter With Phase-Controlled Class-D ZVS Inverter,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 5, no. 3, pp. 354-363, Sept. 2015. [35] S. Zhong, J. Xu, and X. Zhou, “High-Efficiency Zero-Voltage Switching Single-Stage Switching Amplifier With Half-Bridge Active Clamping Circuit,” IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp. 8574-8584, November 2018. [36] S. Chudjuarjeen, A. Sangswang, and C. Koompai, “An Improved LLC Resonant Inverter for Induction-Heating Applications With Asymmetrical Control,” IEEE Transactions on Industrial Electronics, vol. 58, no. 7, pp. 2915-2925, Jul. 2011. [37] S. H. Cho, C. S. Kim, and S. K. Han, “High-Efficiency and Low-Cost Tightly Regulated Dual-Output LLC Resonant Converter,” IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 2982-2991, Jul. 2012. [38] Y. Du and A. K. S. Bhat, “Analysis and Design of a High-Frequency Isolated Dual-Tank LCL Resonant AC–DC Converter,” IEEE Transactions on Industry Applications, vol. 52, no. 2, pp. 1566-1576, Mar./Apr. 2016. [39] Y. Du and A. K. S. Bhat, “Analysis and Design of a High-Frequency Isolated Dual-Tank LCL Resonant AC–DC Converter,” IEEE Transactions on Industry Applications, vol. 52, no. 2, pp. 1566-1576, Mar./Apr. 2016. [40] N. Marati and D. Prasad, “A Modified Feedback Scheme Suitable for Repetitive Control of Inverter With Nonlinear Load,” IEEE Transactions on Power Electronics, vol.
    33, no. 3, pp. 2588-2600, March 2018.
    [41] Z. Fang, J. Wang, S. Duan, K. Liu, and T. Cai, “Control of an LLC Resonant Converter Using Load Feedback Linearization,” IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 887-898, Jan. 2018. [42] S. J. Huang, T. S. Lee, and T. H. Huang, “Inductive Power Transfer Systems for PT-Based Ozone-Driven Circuit with Flexible Capacity Operation and Frequency-Tracking Mechanism,” IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6691-6699, December 2014. [43] H. Yu, B. Chen, W. Yao, and Z. Lu, “Hybrid Seven-Level Converter Based on T-Type Converter and H-Bridge Cascaded Under SPWM and SVM,” IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 689-702, Jan. 2018. [44] M. Amjad, Z. Salam, M. Facta, and S. Mekhilef, “Analysis and Implementation of Transformerless LCL Resonant Power Supply for Ozone Generation,” IEEE Transactions on Power Electronic, vol. 28, no. 2, pp. 650-660, Feb. 2013. [45] M. Amjad and Z. Salam, “Design and Implementation of a High-Frequency LC-Based Half-Bridge Resonant Converter for Dielectric Barrier Discharge Ozone Generator,” IET Power Electronics, vol. 7, no. 9, pp. 2403-2411, Sept. 2014. [46] K. H. Park and K. H. Yi, “A Wide Load Range ZVS Dual Half-Bridge Converters for Large-Sized PDP Sustaining Power Modules,” Journal of Display Technology, vol. 11, no. 1, pp. 86-96, Jan. 2015. [47] W. Zhang, T. Zhang, and Q. Guo, “High-efficiency wireless power transfer system for 3D, unstationary free-positioning and multi-object charging,” IET Electric Power Applications, vol. 12, no. 5, pp. 658-665, Apr. 2018. [48] C. Badowich and L. Markley, “Idle Power Loss Suppression in Magnetic Resonance Coupling Wireless Power Transfer,” IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp. 8605-8612, Nov. 2018. [49] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “An Optimized Track Length in Roadway Inductive Power Transfer Systems,” IEEE Transactions on Power Electronics, Vol. 2, No. 3, pp. 598-608, September 2014. [50] J. P. K. Sampath, D. M. Vilathgamuwa and A. Alphones, “Efficiency Enhancement for Dynamic Wireless Power Transfer System with Segmented Transmitter Array,” IEEE Transactions on Transportation Electrification, Vol. 2, No. 1, pp. 76-85, March 2016. [51] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in Wireless Power Transfer Systems for Roadway-Powered Electric Vehicles,” IEEE Transactions on Power Electronics, Vol. 3, No. 1, pp 18-36, August 2014. [52] W. Zhang and C. C. Mi, “Compensation Topologies of High-Power Wireless Power Transfer Systems,” IEEE Transactions on Vehicular Technology, Vol. 65, No. 6, pp. 4768-4778, July 2015. [53] A. Zaheer, H. Hao, G. A. Covic and D. Kacprzak, “Investigation of Multiple Decoupled Coil Primary Pad Topologies in Lumped IPT Systems for Interoperable Electric Vehicle Charging,” IEEE Transactions on Power Electronics, Vol. 30, No. 4, pp. 1937-1955, April 2015. [54] M. Budhia, J. T. Boys, G. A. Covic, and C.-Y. Huang, “Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, pp. 318-328, November 2013.
    [55] Y. D. Ko and Y. J. Jang, “The Optimal System Design of the Online Electric Vehicle Utilizing Wireless Power Transmission Technology,” IEEE Transactions on Intelligent Transportation Systems, Vol. 14, No. 3, pp. 1255-1265, May 2013.

    無法下載圖示 校內:2024-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE