簡易檢索 / 詳目顯示

研究生: 邱俊翔
Chiu, Chun-hsiang
論文名稱: 非接觸式感應饋電技術應用於鎳鎘電池充電之研究
Study of the Contactless Inductive Power Transmission Technique for NiCd Battery Charging
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 75
中文關鍵詞: 非接觸式感應充電技術
外文關鍵詞: contactless inductive charging technique
相關次數: 點閱:82下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨為非接觸式感應饋電技術於鎳鎘電池充電之應用研究,其特點在於利用電磁感應耦合機構,對充電電池達成無金屬接點連結之非接觸式感應充電,俾以提升充電系統之安全性。所提非接觸式感應充電系統係採ER型耦合結構作為主要電能傳輸介面,並以鎖相變頻控制使其於充電負載變動時得具諧振頻率追蹤功能,且藉電容補償方式改善充電系統之整體轉換效率。文中尚利用充電控制晶片bq2002設計電池充電電路,對12V/1800mAh鎳鎘電池進行定電流快速充電。經由實測驗證,本文所建構之非接觸式感應充電系統確具可行性,其於充電過程中之最高耦合效率可達80%。

    This thesis proposes a NiCd battery charging circuit based on contactless inductive charging techniques. Without direct metal connections, inductive techniques adopt the magnetic coupling mechanism for contactless inductive charging to promote the safety of charging systems. The ER core is used to transfer power and the phase-locked loop control is used to track the resonant frequency of the various resonant tanks in charging processes. Besides, the transform efficiency is improved by the compensative capacitors. The charging circuit using CC charging algorithm is realized by bq2002 fast-charge management ICs. Finally, the contactless charging system is implemented to verify the performance on a 12V/1800mAh NiCd battery. Experimental results and charging processes are provided for verification. The best coupling efficiency is 80% in charging processes.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1-1 研究背景與目的 1 1-2 發展與應用 4 1-3 論文大綱 5 第二章 感應線圈基本特性分析與二次電池介紹 6 2-1 前言 6 2-2 感應線圈的基本動作原理 6 2-3 鐵芯特性分析 9 2-3-1 磁滞現象 9 2-3-2 軟磁材料介紹 10 2-3-3 感應結構類型 12 2-3-4 感應結構特性分析 13 2-4 感應線圈的非理想效應 15 2-5 二次電池介紹 18 2-5-1 鉛酸電池 18 2-5-2 鎳鎘與鎳氫電池 18 2-5-3 鋰離子電池 19 2-6 電池充電策略 20 2-6-1 定電流充電法 20 2-6-2 定電壓充電法 21 2-6-3 定電流與定電壓充電法 21 2-6-4 脈衝充電法 22 2-6-5 Reflex 充電法 22 第三章 非接觸式感應充電系統架構設計 24 3-1 前言 24 3-2 系統架構規劃 24 3-3 等效模型與補償電路 25 3-3-1 等效模型 25 3-3-2 電磁耦合互感模型分析 26 3-3-3 電容補償網路 28 3-3-4 雙埠網路分析 32 3-4 感應線圈設計 37 第四章 硬體電路規劃與製作 39 4-1 前言 39 4-2 電路架構 39 4-3 初級側電路設計 40 4-3-1 D類半橋切換電路 41 4-3-2 閉迴路控制電路 46 4-3-3 電流調節電路 51 4-4 次級側電路設計 54 4-4-1 充電控制器 54 4-4-2 充電電路 56 4-5 整體設計流程 57 第五章 實驗結果與波形量測 60 5-1 前言 60 5-2 硬體電路製作 60 5-3 實驗結果量測 61 第六章 結論與未來研究方向 68 6-1 結論 68 6-2 未來研究方向 69 參考文獻 70 自傳 75

    [1] K. Finkenzeller, RFID HANDBOOK. 2nd ed., England: Willy, 2003.
    [2] B. J. Heeres, D. W. Novotny, D. M. Divan, and R. D. Lorenz, “Contactless underwater power delivery,” in Proc. IEEE PESC, 1994, vol. 1, pp. 418-423.
    [3] K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 27-35, 1995.
    [4] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
    [5] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, 2004.
    [6] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, 2005.
    [7] K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, J. Murakami, M. Kawase, and T. Satoh, “Power transmission of a desk with a cord-free power supply,” IEEE Trans. Magn., vol. 38, no. 5, pp. 3329-3331, 2002.
    [8] K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, J. Murakami, M. Kawase, and T. Satoh, “Characteristics of the desk with cord-free power supply,” in Proc. IEEE INTERMAG, 2002, p. 6.
    [9] A. W. Green and J. T. Boys, “10 kHz inductively coupled power transfer-concept and control,” in Proc. IEE PEVSD, 1994, pp. 694-699.
    [10] A. Esser, “Contactless charging and communication for electric vehicles,” IEEE Ind. Appl. Mag., vol. 1, no. 6, pp. 4-11, 1995.
    [11] G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. IEEE PEDS, 1995, vol. 2, pp. 797-801.
    [12] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5036, 1996.
    [13] F. Sato, J. Murakami, T. Suzuki, H. Matsuki, S. Kikuchi, K. Harakawa, H. Osada, and K. Seki, “Contactless energy transmission to mobile loads by CLPS-test driving of an EV with starter batteries,” IEEE Trans. Magn., vol. 33, no. 5, pp. 4203-4205, 1997.
    [14] S. Adachi, F. Sato, S. Kikuchi, and H. Matsuki, “Consideration of contactless power station with selective excitation to moving robot,” IEEE Trans. Magn., vol. 34, no. 5, pp. 3583-3585, 1999.
    [15] H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air gap coupler for inductive charger,” IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, 1999.
    [16] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. PowerCon, 2000, vol. 1, pp. 79-84.
    [17] H. Ayano, K. Yamamoto, N. Hino, and I. Yamato, “Highly efficient contactless electrical energy transmission system,” in Proc. IEEE IECON, 2002, vol. 2, pp. 1364-1369.
    [18] B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for Maglev applications,” in Proc. IAS, 2002, vol. 3, pp. 1586- 1591.
    [19] H. Sakamoto, K. Harada, S. Washimiya, and Y. Matstuda, “A non-contact charge system of an electric vehicle in the next generation,” in Proc. INTERMAG, 2003, p. ER-16.
    [20] T. Hata and T. Ohmae, “Position detection method using induced voltage for battery charge on autonomous electric power supply system for vehicles,” in Proc. IEEE AMC, 2004, pp. 187-191.
    [21] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, 1992.
    [22] C. C. Tsai, B. S. Chen, and C. M. Tsai, “Design of wireless transcutaneous energy transmission system for totally artificial hearts,” in Proc. IEEE APCCAS, 2000, pp. 646-649.
    [23] M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, 2001.
    [24] F. Sato, T. Nomoto, G. Kano, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electrical stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964-2966, 2004.
    [25] D. K. Cheng, Field and Wave Electromagnetics. 2nd ed., U.S.A: Addison-Willy, 1989.
    [26] 黃文良,趙世文,王志浩,電子變壓器及電路,全華科技圖書,1995。
    [27] M. U. Robbins, Power Electronics. 3rd ed., U.S.A: Wiley, 2003, pp. 752-776.
    [28] A. W. Lotfi, P. M. Gradzki, and F. C. Lee, “Proximity effects in coils for high frequency power applications,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2169-2171, 1992.
    [29] A. W. Lotfi and F. C. Lee, “Proximity losses in short coils of circular cylindrical windings,” in Proc. IEEE PESC, 1992, vol. 2, pp. 1253-1260.
    [30] A. Schellmanns, P. Fouassier, J. P. Keradec, and J. L. Schanen, “Equivalent circuits for transformers based on one-dimensional propagation: accounting for multilayer structure of windings and ferrite losses,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3778-3784, 2000.
    [31] N. Xi and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors,” in Proc. IEEE PESC, 2003, vol. 2, pp. 853-860.
    [32] N. Xi and C. R. Sullivan, “Simplified high-accuracy calculation of eddy-current loss in round-wire windings,” in Proc. IEEE PESC, 2004, vol. 2, pp. 873-879.
    [33] C. S. Wang, O. H. Stielau, and G. A. Covic, “Load models and their application in the design of loosely coupled inductive power transfer systems,” in Proc. PowerCon, 2000, vol. 2, pp. 1053-1058.
    [34] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, 2004.
    [35] Y. Wu, L. Yan, and S. Xu, “Modeling and performance analysis of the new contactless power supply system,” in Proc. ICEMS, 2005, vol. 3, pp. 1983-1987.
    [36] H. Abe, H. Sakamoto, and K. Harada, “A noncontact charger using a resonant converter with parallel capacitor of the secondary coil,” IEEE Trans. Ind. Appl., vol. 36, no. 2, pp. 444-451, 2000.
    [37] H. Miura, S. Arai, F. Sato, H. Matsuki, and T. Sato, “A synchronous rectification using a digital PLL technique for contactless power supplies,” IEEE Trans. Magn., vol. 41, no. 10, pp. 3997-3999, 2005.
    [38] R. L. Lin and Y. T. Chen, “Electronic ballast for fluorescent lamps with phase-locked loop control scheme,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 254-262, 2006.
    [39] TPS5430 Data Sheet, Texas Instruments Inc., 2006.
    [40] BQ2002 Data Sheet, Texas Instruments Inc., 1999.
    [41] 盧明智,黃敏祥,OP Amp應用+實驗模擬,全華科技圖書,1995。
    [42] 邱良祥,環型壓電變壓器應用於直流電源轉換器之研究,國立成功大學電機工程系碩士論文,2002。
    [43] 李依穎,非接觸式感應饋電技術應用於可動機具之研究,國立成功大學電機工程系碩士論文,2006。
    [44] 羅國原,非接觸式感應充電技術應用於可攜式電子產品之研究,國立成功大學電機工程系碩士論文,2006。

    下載圖示 校內:立即公開
    校外:2007-08-14公開
    QR CODE