簡易檢索 / 詳目顯示

研究生: 郭明軒
Kuo, Ming-Hsuan
論文名稱: 具有電流再利用次諧波混頻器之超低功耗喚醒接收機
An Ultra-Low-Power Wake-Up Receiver with Current-Reuse Sub-Harmonic Mixer
指導教授: 鄭光偉
Cheng, Kuang-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 109
中文關鍵詞: 物聯網喚醒接收機環形振盪器次諧波混頻器開關鍵控頻率鍵移多路徑混頻器比較器除頻器
外文關鍵詞: Internet-of-things (IoT), wake-up receiver (WuRx), ring oscillator (RO), sub-harmonic mixer, on-off keying (OOK), frequency-shift keying (FSK), N-path filter/mixer (NPFM), comparator, divider
相關次數: 點閱:111下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在物聯網時代的來臨,隨著無線感測器網路需求量的增加。主要接收機持續性的醒著伴隨著功耗問題。因此,喚醒接收機的需求大幅提升。喚醒接收機是在接收到訊號後會再觸發主要接收機開始工作。這樣大部分時間主要接收機可以在睡眠狀態,從而降低功耗。因此,在喚醒接收機持續開著下,低功耗及高靈敏度則為設計上的挑戰。
    本篇論文提出一個低功耗高靈敏度喚醒接收器。並且可以解調開關鍵控及頻率鍵移的調變訊號。在低功耗的設計下要提高靈敏度,第一級的低雜訊放大器的雜訊指數占很重要的角色。為了使功耗降低,使用次諧波降頻器,能夠有效降低本地振盪器的頻率及功耗。在第一次降頻後,透過帶有增益之多路徑混頻器可以同時達到降頻以及帶通濾波器的效果。在這多路徑混頻器中,同時包含著中心頻率的可調性,可以達到解調FSK訊號的需求。最後透過包絡檢測器及比較器解出喚醒訊號。在時脈產生器上,運用了四級環形振盪器來產生本地振盪頻率給次諧波混頻器。在除頻器中,運用了風車除頻器來同時除頻並改變占空比,可以大幅降低功耗。
    本篇論文使用台積電90奈米互補式金屬氧化物半導體製程。工作於433百萬赫茲、資料傳輸率為每秒100千位元,達到-85 dBm的靈敏度,並且在電壓1伏特下功率消耗為184微瓦。

    As the era of the Internet of Things (IoT) dawns, the demand for wireless sensor networks has significantly increased. The continuous operation of primary receivers is accompanied by power consumption issues. Therefore, the requirement for wake-up receivers (WuRxs) has risen substantially. WuRx trigger the primary receiver to start working upon receiving a signal. This allows the primary receiver to remain in a sleep mode most of the time, thereby reducing power consumption. Consequently, low power consumption and high sensitivity are design challenges for always-on WuRx.
    This paper proposes a low-power high-sensitivity WuRx capable of demodulating on-off keying (OOK) and frequency-shift keying (FSK) modulation signals. To enhance sensitivity while maintaining low power consumption, the noise figure of the first stage low-noise amplifier (LNA) plays a crucial role. To reduce the power consumption, a sub-harmonic mixer is employed, effectively lowering the frequency and power consumption of the local oscillator (LO). After the downconversion, the gain enhanced N-path filter/mixer (NPFM) achieves both downconversion and band-pass filtering. This NPFM also includes frequency shift technique, meeting the requirements for demodulating FSK signals. Finally, an envelope detector and comparator decode the wake-up signal. For the clock generator, a four-stage ring oscillator generates the LO frequency to drive the sub-harmonic mixer. A windmill divider is used in the frequency dividers to simultaneously divide the frequency and change the duty cycle, significantly reducing power consumption.
    This work is implemented using TSMC 90nm CMOS technology. Operating at 433 MHz with a data rate of 100 kbps, the receiver achieves a sensitivity of -85 dBm and a power consumption of 184 µW at a supply voltage of 1-V.

    1. Introduction - 1 - 1-1. Motivation - 1 - 1-2. Wake-up Receiver Design Considerations - 3 - 1-2-1. Power Consumption - 3 - 1-2-2. Sensitivity - 3 - 1-2-3. Target - 4 - 1-3. Thesis Overview - 5 - 2. Fundamental of Receiver - 6 - 2-1. Design Considerations of RF Front-End - 6 - 2-1-1. Impedance Matching - 6 - 2-1-2. Conversion Gain - 8 - 2-1-3. Noise Figure - 8 - 2-1-4. Linearity - 9 - 2-1-5. Phase Noise - 13 - 2-2. RF Front-End Architecture - 14 - 2-2-1. LNTA Architecture - 14 - 2-2-2. Mixer First Architecture - 15 - 2-3. Wake-Up Receiver - 16 - 2-3-1. Direct Conversion Architecture - 16 - 2-3-2. Sliding-IF Architecture - 17 - 2-3-3. Low-IF Architecture - 18 - 2-3-4. Uncertain-IF Architecture - 20 - 2-3-5. Envelope Detection Architecture - 21 - 2-4. Conclusions - 22 - 3. Proposed Ultra-Low-Power Wake-Up Receiver - 23 - 3-1. Architecture of Ultra-Low-Power Wake-Up Receiver - 23 - 3-2. Circuit Implementation - 24 - 3-2-1. Current-Reuse Sub-Harmonic Mixer - 24 - 3-2-2. 4-stage Ring Oscillator - 43 - 3-2-3. 12.5% Duty Cycle Circuit - 46 - 3-2-4. Divide-by-32 Circuit - 47 - 3-2-5. Windmill Divider - 50 - 3-2-6. Demodulation Circuit - 51 - 3-2-7. Output Buffer - 59 - 3-3. Simulation Result - 60 - 3-3-1. RF Front-End - 60 - 3-3-2. Wake-Up Receiver - 63 - 4. Measurement - 67 - 4-1. RF Front-End (Chip#1) - 67 - 4-1-1. Measurement Setup - 69 - 4-1-2. Measurement Results - 72 - 4-2. Wake-Up Receiver (Chip#2) - 77 - 4-2-1. Measurement Setup - 79 - 4-2-2. Measurement Results - 80 - 4-3. Conclusion of Measurement Results - 89 - 5. Conclusions and Future Work - 92 - 5-1. Conclusions - 92 - 5-2. Future Work - 93 - 5-2-1 Linearity - 93 - Reference - 94 -

    [1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," IEEE Communications Magazine, vol. 40, pp. 102-114, 2002.
    [2] K.-M. Kim et al., "A −124-dBm Sensitivity Interference-Resilient Direct-Conversion Duty-Cycled Wake-Up Receiver Achieving 0.114 mW at 1.966-s Wake-Up Latency," IEEE Journal of Solid-State Circuits, vol. 58, no. 6, pp. 1667-1680, Jun. 2023.
    [3] C. Chen, D. Huang, Y. Zhao, Y. Jin, and J. Yang, "An Ultra-Low-Voltage 2.4-GHz Flicker-Noise-Free RF Receiver Front End Based on Switched-Capacitor Hybrid TIA With 4.5-dB NF and 11.5-dBm OIP3," IEEE Journal of Solid-State Circuits, vol. 58, no. 7, pp. 1825-1837, Jul. 2023.
    [4] V. K. Purushothaman, E. A. M. Klumperink, B. T. Clavera, and B. Nauta, "A Fully Passive RF Front End With 13-dB Gain Exploiting Implicit Capacitive Stacking in a Bottom-Plate N-Path Filter/Mixer," IEEE Journal of Solid-State Circuits, vol. 55, no. 5, pp. 1139-1150, May 2020.
    [5] R. Liu et al., "An 802.11ba-Based Wake-Up Radio Receiver With Wi-Fi Transceiver Integration," IEEE Journal of Solid-State Circuits, vol. 55, no. 5, pp. 1151-1164, May 2020.
    [6] K.-M. Kim et al., "A –123-dBm Sensitivity Split-Channel BFSK Reconfigurable Data/Wake-Up Receiver for Low-Power Wide-Area Networks," IEEE Journal of Solid-State Circuits, vol. 56, no. 9, pp. 2656-2667, Sep. 2021.
    [7] L. Z. e. al., "A–102-dBm Sensitivity Multichannel Heterodyne Wake-Up Receiver With Integrated ADPLL," IEEE Open Journal of the Solid-State Circuits Society, vol. 4, pp. 43-56, Apr. 2024.
    [8] C. Salazar, A. Cathelin, A. Kaiser, and J. Rabaey, "A 2.4 GHz Interferer-Resilient Wake-Up Receiver Using A Dual-IF Multi-Stage N-Path Architecture," IEEE Journal of Solid-State Circuits, vol. 51, no. 9, pp. 2091-2105, Sep. 2016.
    [9] P. Bassirian et al., "Design of an S-Band Nanowatt-Level Wakeup Receiver With Envelope Detector-First Architecture," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 9, pp. 3920-3929, Sep. 2020.
    [10] C. J. Jeong, W. Qu, Y. Sun, D. Y. Yoon, S. K. Han, and S. G. Lee, "A 1.5V 140A CMOS ultra-low power common-gate LNA," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Jun. 2011, pp. 1-4.
    [11] N. Vitee, H. Ramiah, P.-I. Mak, J. Yin, and R. P. Martins, "A 1-V 4-mW Differential-Folded Mixer With Common-Gate Transconductor Using Multiple Feedback Achieving 18.4-dB Conversion Gain, +12.5-dBm IIP3, and 8.5-dB NF," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 5, pp. 1164-1174, May 2020.
    [12] L. Xiaoyong, S. Shekhar, and D. J. Allstot, "Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18um CMOS," IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2609-2619, Dec. 2005.
    [13] F. Belmas, F. Hameau, and J.-M. Fournier, "A Low Power Inductorless LNA With Double Gm Enhancement in 130 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 47, no. 5, pp. 1094-1103, May 2012.
    [14] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, "Wide-Band CMOS Low-Noise Amplifier Exploiting Thermal Noise Canceling," IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 275-282, Feb. 2004.
    [15] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, "Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling," IEEE Journal of Solid-State Circuits, vol. 43, no. 6, pp. 1341-1350, Jun. 2008.
    [16] Z. Liu, C. C. Boon, X. Yu, C. Li, K. Yang, and Y. Liang, "A 0.061-mm² 1–11-GHz Noise-Canceling Low-Noise Amplifier Employing Active Feedforward With Simultaneous Current and Noise Reduction," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 6, pp. 3093-3106, Jun. 2021.
    [17] J. Pandey, J. Shi, and B. Otis, "A 120W MICS ISM-band FSK receiver with a 44W low-power mode based on injection-locking and 9xfrequency multiplication," IEEE International Solid-State Circuits Conference, Feb, 2011, pp. 460-462.
    [18] J. Jiang, J. Kim, A. I. Karsilayan, and J. Silva-Martinez, "A 3–6-GHz Highly Linear I-Channel Receiver With Over +3.0-dBm In-Band P1dB and 200-MHz Baseband Bandwidth Suitable for 5G Wireless and Cognitive Radio Applications," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 8, pp. 3134-3147, Aug. 2019.
    [19] M. Akula, A. Kale, and J. Sturm, "A Double-Balanced N-Phase Passive 3 × Sub-Harmonic Down-Conversion Mixer," presented at the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021.
    [20] N. Shams and F. Nabki, "Blocker-Tolerant Inductor-Less Harmonic Selection Wideband Receiver Front-End for 5G Applications," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31, no. 3, pp. 369-381, Mar. 2023.
    [21] Y. Xu, J. Zhu, and P. R. Kinget, "A Blocker-Tolerant RF Front End With Harmonic-Rejecting N-Path Filter," IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 327-339, Feb. 2018.
    [22] R. V. Rena, R. Kammari, and V. S. Pasupureddi, "A 0.4–1.8-GHz Quarter-Rate Subsampling Mixer-First Direct Down-Conversion RF Front-End," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 1-12, Mar. 2023.
    [23] H. Darabi and A. A. Abidi, "Noise in RF-CMOS mixers a simple physical model," IEEE Journal of Solid-State Circuits, vol. 35, pp. 15-25, Jan. 2000.
    [24] S. Suman, K. G. Sharma, and P. K. Ghosh, "Analysis and design of current starved ring VCO," ICEEOT, 2016.
    [25] W. Bae, H. Ju, K. Park, S.-Y. Cho, and D.-K. Jeong, "A 7.6 mW, 414 fs RMS-Jitter 10 GHz Phase-Locked Loop for a 40 Gb/s Serial Link Transmitter Based on a Two-Stage Ring Oscillator in 65 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2357-2367, 2016.
    [26] J. N. Soares and W. A. M. V. Noije, "A 1.6-GHz dual modulus prescaler using the extended true-single-phase-clock CMOS circuit technique E-TSPC," IEEE Journal of Solid-State Circuits, vol. 34, pp. 97 - 102, Jan. 1999.
    [27] D. Murphy et al., "A Blocker-Tolerant, Noise-Cancelling Receiver Suitable for Wideband Wireless Applications," IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2943-2963, Dec. 2012.
    [28] B. J. Thijssen, E. A. M. Klumperink, P. Quinlan, and B. Nauta, "2.4-GHz Highly Selective IoT Receiver Front End With Power Optimized LNTA, Frequency Divider, and Baseband Analog FIR Filter," IEEE Journal of Solid-State Circuits, vol. 56, no. 7, pp. 2007-2017, Jul. 2021.
    [29] C. Andrews and A. C. Molnar, "Implications of Passive Mixer Transparency for Impedance Matching and Noise Figure in Passive Mixer-First Receivers," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 12, pp. 3092-3103, Dec. 2010.
    [30] Y.-C. Lien, E. A. M. Klumperink, B. Tenbroek, J. Strange, and B. Nauta, "High-Linearity Bottom-Plate Mixing Technique With Switch Sharing for N-path Filters/Mixers," IEEE Journal of Solid-State Circuits, vol. 54, no. 2, pp. 323-335, Feb. 2019.
    [31] M. Darvishi, R. van der Zee, E. A. M. Klumperink, and B. Nauta, "Widely Tunable 4th Order Switched Gm-C Band-Pass Filter Based on N-Path Filters," IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 3105-3119, Dec. 2012.
    [32] V. K. Purushothaman, E. A. M. Klumperink, R. Plompen, and B. Nauta, "Low-Power High-Linearity Mixer-First Receiver Using Implicit Capacitive Stacking With 3× Voltage Gain," IEEE Journal of Solid-State Circuits, vol. 57, no. 1, pp. 245-259, Jan. 2022.
    [33] M. Barzgari, A. Ghafari, M. Meghdadi, and A. Medi, "A Current Re-Use Quadrature RF Receiver Front-End for Low Power Applications: Blixator Circuit," IEEE Journal of Solid-State Circuits, vol. 57, no. 9, pp. 2672-2684, Sep. 2022.
    [34] M. Tamura et al., "30.5 A 0.5V BLE Transceiver with a 1.9mW RX Achieving -96.4dBm Sensitivity and 4.1dB Adjacent Channel Rejection at 1MHz Offset in 22nm FDSOI," IEEE International Solid-State Circuits Conference (ISSCC), 2020, pp. 468-470.
    [35] A. Dissanayake, H. L. Bishop, S. M. Bowers, and B. H. Calhoun, "A 2.4 GHz-91.5 dBm Sensitivity Within-Packet Duty-Cycled Wake-Up Receiver," IEEE Journal of Solid-State Circuits, vol. 57, no. 3, pp. 917-931, Mar. 2022.
    [36] A. Nikoofard, H. A. Zadeh, and P. P. Mercier, "A 0.6-mW 16-FSK Receiver Achieving a Sensitivity of −103 dBm at 100 kb/s," IEEE Journal of Solid-State Circuits, vol. 56, no. 4, pp. 1299-1309, Apr. 2021.
    [37] J. Im, H.-S. Kim, and D. D. Wentzloff, "A 217W 82dBm IEEE 802.11 Wi-Fi LP-WUR using a 3rd-Harmonic Passive Mixer," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 172-175, Jun. 2018.
    [38] M. Moosavifar, J. Im, and D. D. Wentzloff, "An Interference-Resilient Bit-Level Duty-Cycled ULP Receiver Leveraging a Dual-Chirp Modulation," IEEE Journal of Solid-State Circuits, vol. 59, no. 2, pp. 337-348, Feb. 2024.
    [39] B. H. Lam, H. Lu, A. G. Gadelkarim, N. Fathy, P. Gudem, and P. P. Mercier, "A 0.11-mW 2.4-GHz Receiver Employing a Q-Boosted Impedance Transformer and Regenerative Amplifier Achieving −101-dBm Sensitivity and −28-dB SIR," IEEE Solid-State Circuits Letters, vol. 6, pp. 5-8, Jan. 2023.
    [40] C.-Y. Chiu, Z.-C. Zhang, and T.-H. Lin, "Design of a 0.6-V, 429-MHz FSK Transceiver Using Q-Enhanced and Direct Power Transfer Techniques in 90-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 55, no. 11, pp. 3024-3035, Nov. 2020.
    [41] M. A. Montazerolghaem, L. C. N. de Vreede, and M. Babaie, "A Highly Linear Receiver Using Parallel Preselect Filter for 5G Microcell Base Station Applications," IEEE Journal of Solid-State Circuits, vol. 58, no. 8, pp. 2157-2172, Aug, 2023.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE