簡易檢索 / 詳目顯示

研究生: 張哲嘉
Jhang, Jhe-Jia
論文名稱: 應用於熱電獵能器之具低啟動電壓的全積體化升壓型直流-直流轉換器
Fully-Integrated Boost DC-DC Converter with Low-Startup Voltage for Thermoelectric Harvester
指導教授: 魏嘉玲
Wei, Chia-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 95
中文關鍵詞: 低供應電壓邏輯電路低啟動電壓升壓型轉換器熱電獵能器
外文關鍵詞: Low supply voltage logic, Low-startup voltage, Boost converter, Thermoelectric harvester
相關次數: 點閱:90下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年隨著物聯網(Internet of Things, IoT)和獵能技術(Energy Harvesting)的發展,穿戴式裝置或無線傳感晶片之供電端通常為能夠獵取環境中能量的獵能器,而這些獵能器的輸出電壓通常都偏低,所以本研究提出具全積體化低電壓啟動電路的升壓型直流-直流轉換器,所提出的啟動機制並不需要經過後製程調校或額外外部元件、能量源,是一利於整合的SoC升壓型轉換器晶片。另外,考量到應用端為輕載,所以選用脈波頻率調變(Pulse-Frequency-Modulation, PFM)的控制方法來實現轉換器之控制器設計,使輕載時能有較好的效率表現。

    本晶片使用台灣積體電路公司(TSMC)提供之0.18μm 1P6M Mixed-signal Standard CMOS製程實現之,而晶片面積為720μm × 735μm,並採用DIP 24S/B進行封裝。根據量測結果,本晶片最低啟動電壓為82mV,成功啟動後輸出電壓可穩在1V - 1.8V,而最佳效率為78.55%。另外,亦實際使用熱電溫差發電片當作輸入能量源進行量測,藉由人體體溫和室溫之間的溫差而轉換出的電壓,便能使本研究之系統成功啟動,穩定提供輸出電壓供應用端使用。

    The most critical issue of using energy harvesters is their low output voltage, which makes it difficult to power up traditional electronic circuits. Therefore, this thesis proposes a fully-integrated inductor-based dc-dc boost converter with low startup voltage for thermoelectric harvester. In the initial state, low-voltage ring oscillator built by low supply voltage logic, charge pump and voltage-triggered pulse generator are used to charge the output capacitor and increase the output voltage (VOUT). When VOUT is high enough, the system will enter the open-loop state. When VOUT is increased to exceed another predefined voltage, the system will operate in the closed-loop state and VOUT will be regulated at 1.8V finally. It is worth mentioning that the startup technique in the proposed chip does not need to use any post-fabrication process, secondary energy source, or extra off-chip components.

    The proposed chip was fabricated by TSMC 0.18μm 1P6M mixed-signal standard CMOS process, and chip area is 720×735μm2. According to measurement results, the minimal startup voltage of the converter is as low as 82mV, and VOUT can be regulated between 1 V and 1.8 V. Moreover, the measured peak efficiency achieves 78.55%.

    第一章 簡介 1 1-1 研究動機 1 1-2 論文架構 3 第二章 文獻探討 4 2-1 背景知識 4 2-1-1. 轉換器導通模態 4 2-1-2. 轉換器控制方法 6 2-1-3. 熱電溫差發電片(Thermoelectric Generator, TEG) 9 2-2 低電壓啟動之升壓型轉換器研究近況 11 2-2-1. 輔助機械開關(Assistant Mechanical Switch)啟動機制 11 2-2-2. LC諧振振盪器(LC-tank Oscillator)啟動機制 13 2-2-3. 後製程調校臨界電壓之振盪器(Vth-tuned Oscillator)啟動機制 15 第三章 系統架構與電路設計 18 3-1 系統架構簡介 18 3-2 升壓型轉換器 18 3-3 電路設計與功能介紹 21 3-3-1. 功率級(Power Stage) 22 3-3-2. 低電壓環形振盪器(Low Voltage Ring Oscillator) 23 3-3-3. 迪克森電荷泵浦(Dickson Charge Pump) 26 3-3-4. 電壓偵測器(Voltage Detector) 27 3-3-5. 電壓觸發型脈波產生器(Voltage-Triggered Pulse Generator) 30 3-3-6. 開迴路時脈產生器(Open-Loop Clock Generator) 32 3-3-7. 恆定轉導偏壓電路(Constant-gm Bias Circuit) 33 3-3-8. 比較器(Comparator) 34 3-3-9. 零電流偵測器(Zero Current Detector) 36 3-3-10. 脈波頻率調變控制電路(PFM Controller) 39 3-3-11. 閘極驅動器(Gate Driver) 43 3-3-12. 抗振盪電路(Anti-Ringing Circuit) 44 3-4 系統運作模式 45 3-4-1. 啟動階段(Startup State) 46 3-4-2. 開迴路階段(Open-Loop State) 47 3-4-3. 閉迴路階段(Closed-Loop State) 48 第四章 模擬結果與佈局考量 50 4-1 模擬結果 50 4-1-1. 子電路模擬 50 4-1-2. 全系統模擬 55 4-2 佈局考量 60 4-3 打線圖 63 第五章 量測結果 65 5-1 量測環境與考量 65 5-2 量測結果 69 5-2-1. 子電路量測波形 69 5-2-2. 全系統量測波形 71 5-2-3. 最低啟動電壓量測 79 5-2-4. 輸入電壓範圍量測 81 5-3 轉換器調節率(REGULATION) 83 5-3-1. 負載調節率(Load Regulation) 83 5-3-2. 電源電壓調節率(Line Regulation) 85 5-4 效率量測 87 5-5 規格與效能比較表 89 第六章 結論與未來展望 92 參考文獻 93

    [1] J. Lim, C.-K. Huang, M. Ryan, G. J. Snyder, J. Herman, and J.-P. Fleurial, “MEMS/ECD Method for Making Bi2-xSbxTe3 Thermoelectric Devices,” NASA Tech Briefs, vol. 32, no. 7, pp. 10-11, July 2008.
    [2] Y. K. Ramadass and A. P. Chandrakasan, “A battery-less thermoelectric energy harvesting interface circuit with 35mV startup voltage,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 333-341, Jan. 2011.
    [3] P.-S. Weng, H.-Y. Tang, P.-C. Ku, and L.-H. Lu, “50 mV-Input batteryless boost converter for thermal energy harvesting,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1031–1041, Apr. 2013.
    [4] P.-H. Chen, X. Zhang, K. Ishida, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “An 80 mV startup dual-mode boost converter by charge-pumped pulse generator and threshold voltage tuned oscillator with hot carrier injection,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2554–2562, Nov. 2012.
    [5] P.-H. Chen, K. Ishida, K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “Startup techniques for 95 mV step-up converter by capacitor pass-on scheme and Vth-tuned oscillator with fixed charge programming,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1252–1260, May 2012.
    [6] Niklas Lotze, and Yiannos Manoli, “A 62mV 0.13 μm CMOS Standard-Cell-Based Design Technique Using Schmitt-Trigger Logic,” IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 47-60, Jan. 2012.
    [7] E. J. Carlson, K. Strunz, and B. P. Otis, and, “A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 741-750, Apr. 2010.
    [8] H. Fuketa, S.-I. O’uchi, and T. Matsukawa, “Fully integrated, 100-mV minimum input voltage converter with gate-boosted charge pump kick-started by LC oscillator for energy harvesting,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 4, pp. 392-396, Apr. 2017.
    [9] Z. Luo, L. Zeng, B. Lau, Y. Lian, and C.-H. Heng, “A Sub-10 mV Power Converter with Fully Integrated Self-Start, MPPT, and ZCS Control for Thermoelectric Energy Harvesting,” IEEE Trans. Circuits Syst. I, Reg. Papers, May 2018.
    [10] H.-H. Wu, and C.-L. Wei, “Design of an Adaptive Peak-Inductor-Current Controlled Pulse Frequency Modulated Boost Converter with a Near-Threshold Startup Voltage,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2012.
    [11] L.-Y. Chen, and C.-L. Wei, “Design of a Pulse-Frequency-Modulation Controlled DC-DC Boost Converter,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Nov. 2015.
    [12] L.-Y. Chen, and C.-L. Wei, “Wide-Input-Voltage-Range and High-Efficiency Energy Harvester with a 155-mV Startup Voltage for Solar Power,” 2017 IEEE European Solid State Circuits Conference (ESSCIRC), pp. 295-298, Sept. 2017.
    [13] H.-H. Wu, C. L. Wei, Y.-C. Hsu, and R. B. Darling, “Adaptive Peak-Inductor-Current-Controlled PFM Boost Converter with a Near-Threshold Startup Voltage and High Efficiency,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1956–1965, Apr. 2015.
    [14] Y. K. Teh, and P. K. T. Mok., “Design Consideration of Recent Advanced Low-Voltage CMOS Boost Converter for Energy Harvesting,” 2015 European Conference on Circuit Theory and Design (ECCTD), pp. 1-4, 2015.
    [15] J.-P. Im, S.-W. Wang, S.-T. Ryu, G.-H. Cho, “A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3055-3067, Dec. 2012.
    [16] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill Education, 2002.
    [17] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd Ed., Kluwer Academic Publishers, 1999.

    無法下載圖示 校內:2023-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE