| 研究生: |
張哲嘉 Jhang, Jhe-Jia |
|---|---|
| 論文名稱: |
應用於熱電獵能器之具低啟動電壓的全積體化升壓型直流-直流轉換器 Fully-Integrated Boost DC-DC Converter with Low-Startup Voltage for Thermoelectric Harvester |
| 指導教授: |
魏嘉玲
Wei, Chia-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 低供應電壓邏輯電路 、低啟動電壓 、升壓型轉換器 、熱電獵能器 |
| 外文關鍵詞: | Low supply voltage logic, Low-startup voltage, Boost converter, Thermoelectric harvester |
| 相關次數: | 點閱:90 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年隨著物聯網(Internet of Things, IoT)和獵能技術(Energy Harvesting)的發展,穿戴式裝置或無線傳感晶片之供電端通常為能夠獵取環境中能量的獵能器,而這些獵能器的輸出電壓通常都偏低,所以本研究提出具全積體化低電壓啟動電路的升壓型直流-直流轉換器,所提出的啟動機制並不需要經過後製程調校或額外外部元件、能量源,是一利於整合的SoC升壓型轉換器晶片。另外,考量到應用端為輕載,所以選用脈波頻率調變(Pulse-Frequency-Modulation, PFM)的控制方法來實現轉換器之控制器設計,使輕載時能有較好的效率表現。
本晶片使用台灣積體電路公司(TSMC)提供之0.18μm 1P6M Mixed-signal Standard CMOS製程實現之,而晶片面積為720μm × 735μm,並採用DIP 24S/B進行封裝。根據量測結果,本晶片最低啟動電壓為82mV,成功啟動後輸出電壓可穩在1V - 1.8V,而最佳效率為78.55%。另外,亦實際使用熱電溫差發電片當作輸入能量源進行量測,藉由人體體溫和室溫之間的溫差而轉換出的電壓,便能使本研究之系統成功啟動,穩定提供輸出電壓供應用端使用。
The most critical issue of using energy harvesters is their low output voltage, which makes it difficult to power up traditional electronic circuits. Therefore, this thesis proposes a fully-integrated inductor-based dc-dc boost converter with low startup voltage for thermoelectric harvester. In the initial state, low-voltage ring oscillator built by low supply voltage logic, charge pump and voltage-triggered pulse generator are used to charge the output capacitor and increase the output voltage (VOUT). When VOUT is high enough, the system will enter the open-loop state. When VOUT is increased to exceed another predefined voltage, the system will operate in the closed-loop state and VOUT will be regulated at 1.8V finally. It is worth mentioning that the startup technique in the proposed chip does not need to use any post-fabrication process, secondary energy source, or extra off-chip components.
The proposed chip was fabricated by TSMC 0.18μm 1P6M mixed-signal standard CMOS process, and chip area is 720×735μm2. According to measurement results, the minimal startup voltage of the converter is as low as 82mV, and VOUT can be regulated between 1 V and 1.8 V. Moreover, the measured peak efficiency achieves 78.55%.
[1] J. Lim, C.-K. Huang, M. Ryan, G. J. Snyder, J. Herman, and J.-P. Fleurial, “MEMS/ECD Method for Making Bi2-xSbxTe3 Thermoelectric Devices,” NASA Tech Briefs, vol. 32, no. 7, pp. 10-11, July 2008.
[2] Y. K. Ramadass and A. P. Chandrakasan, “A battery-less thermoelectric energy harvesting interface circuit with 35mV startup voltage,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 333-341, Jan. 2011.
[3] P.-S. Weng, H.-Y. Tang, P.-C. Ku, and L.-H. Lu, “50 mV-Input batteryless boost converter for thermal energy harvesting,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1031–1041, Apr. 2013.
[4] P.-H. Chen, X. Zhang, K. Ishida, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “An 80 mV startup dual-mode boost converter by charge-pumped pulse generator and threshold voltage tuned oscillator with hot carrier injection,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2554–2562, Nov. 2012.
[5] P.-H. Chen, K. Ishida, K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “Startup techniques for 95 mV step-up converter by capacitor pass-on scheme and Vth-tuned oscillator with fixed charge programming,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1252–1260, May 2012.
[6] Niklas Lotze, and Yiannos Manoli, “A 62mV 0.13 μm CMOS Standard-Cell-Based Design Technique Using Schmitt-Trigger Logic,” IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 47-60, Jan. 2012.
[7] E. J. Carlson, K. Strunz, and B. P. Otis, and, “A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 741-750, Apr. 2010.
[8] H. Fuketa, S.-I. O’uchi, and T. Matsukawa, “Fully integrated, 100-mV minimum input voltage converter with gate-boosted charge pump kick-started by LC oscillator for energy harvesting,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 4, pp. 392-396, Apr. 2017.
[9] Z. Luo, L. Zeng, B. Lau, Y. Lian, and C.-H. Heng, “A Sub-10 mV Power Converter with Fully Integrated Self-Start, MPPT, and ZCS Control for Thermoelectric Energy Harvesting,” IEEE Trans. Circuits Syst. I, Reg. Papers, May 2018.
[10] H.-H. Wu, and C.-L. Wei, “Design of an Adaptive Peak-Inductor-Current Controlled Pulse Frequency Modulated Boost Converter with a Near-Threshold Startup Voltage,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2012.
[11] L.-Y. Chen, and C.-L. Wei, “Design of a Pulse-Frequency-Modulation Controlled DC-DC Boost Converter,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Nov. 2015.
[12] L.-Y. Chen, and C.-L. Wei, “Wide-Input-Voltage-Range and High-Efficiency Energy Harvester with a 155-mV Startup Voltage for Solar Power,” 2017 IEEE European Solid State Circuits Conference (ESSCIRC), pp. 295-298, Sept. 2017.
[13] H.-H. Wu, C. L. Wei, Y.-C. Hsu, and R. B. Darling, “Adaptive Peak-Inductor-Current-Controlled PFM Boost Converter with a Near-Threshold Startup Voltage and High Efficiency,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1956–1965, Apr. 2015.
[14] Y. K. Teh, and P. K. T. Mok., “Design Consideration of Recent Advanced Low-Voltage CMOS Boost Converter for Energy Harvesting,” 2015 European Conference on Circuit Theory and Design (ECCTD), pp. 1-4, 2015.
[15] J.-P. Im, S.-W. Wang, S.-T. Ryu, G.-H. Cho, “A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3055-3067, Dec. 2012.
[16] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill Education, 2002.
[17] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd Ed., Kluwer Academic Publishers, 1999.
校內:2023-08-31公開