簡易檢索 / 詳目顯示

研究生: 周弘智
Jhou, Hong-Zhi
論文名稱: 具最大功率追蹤光伏機制與廣域零電壓切換充電器
Wide Load-Range ZVS Phase-Shift Full-Bridge Charger with MPPT Photovoltaic Mechanism
指導教授: 林瑞禮
Lin, Ray-Lee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 105
中文關鍵詞: 光伏系統最大功率追蹤零電壓切換全橋相移式充電器
外文關鍵詞: Photovoltaic System (PV), Maximum Power Point Tracking (MPPT), Zero Voltage Switching (ZVS), Phase-shift Full-bridge (PSFB), Charger
相關次數: 點閱:124下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一植基於最大功率追蹤光伏系統可操作於廣域負載之具零電壓切換全橋相移式充電器電路,配合太陽能板之輸出特性,以類比電路控制太陽能板之輸出電流,達到太陽能板最大功率追蹤之目的,並利用可操作於廣域負載之零電壓切換充電器電路,提高系統輕載效率。其中,具臨界電流導通模式控制法之類比電路,係搭配太陽能電池操作在最大功率點時之特性,以調節太陽能電池之輸出電流,達成最大功率追蹤之目的。此外,藉由設定最大功率追蹤光伏系統定電流輸出,使全橋相移式電池充電器電路之功率開關達到廣域零電壓切換,實現輕重載高效率之目標。
    最後,以一440 W雛型電路驗證所採用之臨界電流導通模式控制法,可使太陽能電池操作於最大功率點,並設定最大功率追蹤光伏系統輸出定電流,確保電路在廣域輕重載下皆有零電壓切換效果,達到電路高效率之目的。

    In this thesis, the wide load-range ZVS phase-shift full-bridge (PSFB) charger with maximum power point tracking (MPPT) photovoltaic mechanism is developed in order to obtain high efficiency even at light load condition.
    According to the output characteristics of the solar cell module, the proposed MPPT photovoltaic system can be implemented with available analog control ICs on the market. Besides, by regulating the input current for the phase-shift full-bridge charger circuit, the wide load-range ZVS of the employed power switches can be ensured.
    Finally, the prototype circuit of the proposed wide load-range ZVS phase-shift full-bridge charger with MPPT photovoltaic mechanism is built in order to verify system efficiency at wide load-range.

    CHAPTER 1. INTRODUCTION 1 1.1. Background 1 1.2. Motivation 4 1.3. Thesis Outline 5 CHAPTER 2. DESIGN MAXIMUM POWER TRACKING PHOTOVOLTAIC CIRCUIT WITH BOUNDARY CONDUCTION MODE CONTROL BUCK-BOOST CONVERTER 6 2.1. Introduction 6 2.2. Characterizations of Solar-Cell Module 6 2.3. Maximum Power Points of Solar-Cell Module for Illumination and Temperature Effects 13 2.4. Approximate Maximum-Power-Point Tracking Straight-Line Technology for Photovoltaic System 17 2.5. Proposed MPP Tracking Circuit with BCM Control for Photovoltaic systems 21 2.5.1. Proposed BCM Non-Inverting Buck-Boost Converter 21 2.5.2. MPP of Solar-Cell Module Design with L6562 26 2.5.3. Temperature Compensation Circuit of Solar-Cell Module 33 2.6. Summary 41 CHAPTER 3. DESIGN OF WIDE LOAD-RANGE ZERO-VOLTAGE-SWITCHING PHASE-SHIFT FULL-BRIDGE CHARGER 42 3.1. Introduction 42 3.2. Design Guideline of Proposed PSFB Charger Circuit 42 3.3. Analysis of Charger Methods 66 3.4. Summary 71 CHAPTER 4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 72 4.1. Introduction 72 4.2. Implementation of Prototype Circuit 72 4.3. Experimental Results 73 4.3.1. MPPT Photovoltaic Circuit at Different Illumination Conditions 73 4.3.2. MPPT Photovoltaic Circuit at Different Temperature Conditions 77 4.3.3. PSFB Charger at different Load Conditions 79 4.4. Summary 84 CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 85 REFERENCES ……………………………………………………………………… 87

    [1] V. Salas, E. Olías, A. Barrado and A. Lazaro, “Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems,” Solar Energy Materials & Solar Cells, vol. 90, pp. 1555–1578, Jul. 2006.
    [2] Trishan Esram and Patrick L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. on Power Electron., vol. 22, no.2, pp. 439-449, Jun. 2007.
    [3] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Trans. on Power Electron., vol. 16, no. 1, pp. 46-54, Jun. 2001.
    [4] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, Jul. 2005.
    [5] D. Sera, R. Teodorescu, J. Hantschel, and M. Knoll, “Optimized maximum power point tracker for fast-changing environmental conditions,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2629-2637, Jul. 2008.
    [6] ASEC, “Monocrystalline Silicon Photovoltaic Module,” ASEC-85G5S datasheet, 2008.
    [7] Peng Lei, Yaoyu Li, and John E. Seem, “Sequential ESC-Based Global MPPT Control for Photovoltaic Array with Variable Shading,” IEEE Trans. on Sustainable Energy, vol. 2, no. 3, pp.348-358, Jul. 2011.
    [8] C.-L. Shen, J.-Y. Wang, “A 3Φ3W Half-Bridge Single-Stage Grid-Connection PV Power Inverter with Direct-Source-Current-Shaping Algorithm to Improve Power Factor,” IEEE TENCON, 2006, pp. 1-4, Nov. 2006.
    [9] C.-L. Shen, Y.-E. Wu, F.-S. Liu, “A Double-Linear Approximation Algorithm to Achieve Maximum-Power-Point Tracking for PV Arrays,” IEEE PEDS, 2009, pp. 758-763, Nov. 2009.
    [10] C.-T. Pan, J.-Y. Chen, C.-P. Chu, and Y.-S. Huang, “A fast maximum power point tracker for photovoltaic power systems,” in Proc. IEEE Ind. Electron., Soc., 1999, pp. 390–393.
    [11] V. V. R. Scarpa, S. Buso, G. Spiazzi, “Low Complexity MPPT Technique Exploiting The Effect Of The Pv Cell Series Resistance,” IEEE APEC, 2008, Austin, pp. 1958-1964.
    [12] V. V. R. Scarpa, S. Buso, and G. Spiazzi, “Low-complexity MPPT Technique Exploiting the PV Module MPP Locus Characterization,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1531–1538, May 2009.
    [13] STMicroelectronics, “Transition-Mode PFC Controller L6562 datasheet, Jun. 2004.
    [14] P. R. K. Chetty, “Current injected equivalent circuit approach to modeling of switching dc–dc converters in discontinuous conduction mode,” IEEE Trans. Ind. Appl., vol. 29, no. 3, pp. 230–234, Aug. 1982.
    [15] E. E. H. Ismail, M. M. A. Al-Saffar, and A. A. J. Sabzali, “High conversion ratio DC–DC converters with reduced switch stress,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 2139–2151, Aug. 2008.
    [16] M. A. Có, D. S. L. Simonetti, and J. L. F. Vieira, “High power factor electronic ballast operating in critical conduction mode,” IEEE Trans. on Power Electron., vol. 13, no. 1, pp. 93–101, Jan. 1998.
    [17] J. Sebastián, J. A. Cobos, J. M. Lopera, and J. Uceda, “The determination of the boundaries between continuous and discontinuous conduction mode in PWM dc-to-dc converters used as power factor preregulators,” IEEE Trans. on Power Electron., vol. 10, no. 5, pp. 574–582, Sept. 1995.
    [18] C. A. Canesin and F. A. S. Goncalves, “Single-phase high power-factor boost ZCS pre-regulator operating in critical conduction mode,” in Proc. IEEE Int. Symp. Ind. Electron., 2003, pp. 746–751.
    [19] Claudio Adragna, “Enhanced transition mode power factor corrector,” Appl. Note 966, pp.1–21.
    [20] Analog Devices Inc., “Two-terminal IC temperature transducer,” AD590 datasheet, 1997.
    [21] Texas Instruments, “BICMOS Advanced Phase-Shift PWM Controller,” UCC3895 datasheet. [Revised May 2009.]
    [22] Bill Andreycak., “Designing a phase-shifted zero-voltage-transition (ZVT) power converter,” Unit rode Power Design Seminar SEM-900, 1993.
    [23] J.A Sabate, Y.Vlatkovic, R.B. Ridely, F.C.Lee, and B.H. Cho, “Design considerations for high-voltage high-power full-bridge zero-voltage-switched PWM converter,” IEEE Applied Power Electronics Conference Proceedings.1990, pp.275-284.
    [24] Fairchild Semiconductor, “N-Channel Power MOSFET,” IRF450 datasheet, Mar. 1999.
    [25] David J. Hamo “A 50W, 500kHz, Full-Bridge, Phase-Shift, ZVS Isolated DC to DC Converter Using the HIP4081A,” Intersil Intelligent Power, No. AN9506, Apr. 1995.
    [26] G. Hua, F.C. Lee., and M.M. Jovanovic, “An improved full-bridge zero-voltage-switched PWM converter using a saturable inductor,” IEEE Trans. on Power Electron., vol. 8, pp. 530-534, Oct. 1993.
    [27] Zhong Chen, Miao Chen, Feng Ji, and Jianxia Li, “Analysis and Implementation of a Novel Full- Bridge ZVS Converter with Adaptive Auxiliary Circuit,” IEEE IECON, 2010, pp. 358-363, Nov. 2010.
    [28] Bingjian Yang, Jorge L. Duarte, Wuhua Li, Kai Yin, Xiangning He, and Yan Deng, “Phase-Shifted Full Bridge Converter Featuring ZVS over the Full Load Range,” IEEE IECON, 2010, pp. 644-649, Nov. 2010.
    [29] CSB, “Lead-Acid Battery,” EVX12340 datasheet.
    [30] H. A. Kiehne, “Battery technology handbook,” Expert Verlag, Germany, 1989.
    [31] Texas Instruments, “Sealed Lead-Acid Battery Charger,” UC3906 datasheet, Sept. 1996. [Revised July 2003.]
    [32] MAXIM, “NiMH Battery Pack Charge Controller,” DS2715 datasheet, pp.1-17.
    [33] Chia-Hsiang Lin, Chi-Lin Chen,Yu-Huei Lee, Shih-Jung Wang, Chun-Yu Hsieh, Hong-Wei Huang, and Ke-Horng Chen, “Fast Charging Technique for Li-Ion Battery Charger,” IEEE ICECS 2008, pp. 618-621, Sept. 2008.

    下載圖示 校內:2016-11-17公開
    校外:2016-11-17公開
    QR CODE