| 研究生: |
楊明翰 Yang, Ming-Han |
|---|---|
| 論文名稱: |
以氮化硼光催化降解水中全氟烷基化合物: 反應機制與中間產物之研究 Photocatalysis of aqueous perfluoroalkyl substances over boron nitride: mechanism and intermediate product studies |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 氮化硼 、全氟烷基化合物 、UVC 光催化 、反應機制 、中間產物 |
| 外文關鍵詞: | boron nitride, perfluoroalkyl compounds, UVC photocatalysis, reaction mechanism, intermediates |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發現酸洗活化後,自行合成的氮化硼 (BN_AA) 表面形成缺陷,B/N 原子比變為 1.3,而商用BN的B/N 比在酸活化前後均維持在1,BN_AA展現出獨特的結構性。酸活化顯著提升了BN表面的酸價和光催化活性,且酸價濃度 (mmol/g) 與光催化活性高度相關 (R² = 0.9485)。本研究亦探討BN_AA 在氯離子作用下的光催化活性。在中性環境和UVC 254 nm光源下,BN_AA 在 30 分鐘內可降解 80% 的全氟辛酸 (PFOA,10 mg/L),一階反應速率為 0.04 min⁻¹。添加 1 mM NaCl 可使BN_AA在30分鐘內達到100%的PFOA降解,一階反應速率為0.09 min⁻¹。化學探針研究證實,氯離子自由基是促進光催化活性的原因,降解PFOA的關鍵物質包括電洞 (h⁺)、超氧化物 (O₂•⁻) 和氯離子自由基 (Cl•)。UPLC-QTOF/MS 測量顯示,PFOA和全氟壬酸 (PFNA) 依序通過C-F鍵斷裂形成短鏈全氟羧酸 (PFCA) 中間產物,並伴隨氟離子釋出。2,3,3,3-四氟-2-(七氟丙氧基)丙酸 (HFPO-DA) 降解後主要生成全氟丙酸 (PFPrA) 和三氟乙酸 (TFA),同時釋出氟離子。全氟辛烷磺酸 (PFOS) 和全氟己烷磺酸 (PFHxS) 的主要產物為短鏈全氟羧酸,伴隨氟離子和硫酸根離子釋出;而全氟丁磺酸 (PFBS) 僅觀察到微量降解,未檢測到中間產物,僅釋出少量硫酸根離子。最後,本研究最佳化了BN_AA降解PFOA的光催化量子產率和每單位去除污染物的電能消耗量,兩者分別為1.5%和35.5 kwh/m³/order。
This study found that acid washing activation induced defects on the surface of in-house boron nitride (BN_AA), resulting in a B/N atomic ratio of 1.3. In contrast, commercial BN maintained a B/N ratio of 1 before and after acid activation, exhibiting unique structural properties of BN_AA. Acid activation significantly enhanced the acidity and photocatalytic activity of BNs, with a strong correlation between acidity concentration (mmol/g) and photocatalytic activity (R² = 0.9485). This study investigated the photocatalytic activity of BN_AA in the addition of 1mM chloride. Under neutral conditions and UVC 254 nm light, BN_AA degraded 80% of perfluorooctanoic acid (PFOA, 10 mg/L) within 30 minutes, with a 1st-order rate constant of 0.04 min⁻¹. Adding 1 mM NaCl enabled BN_AA to achieve 100% PFOA degradation in 30 minutes, with a 1st-order rate constant of 0.09 min⁻¹. Chemical probe studies confirmed that chlorine radicals were the primary drivers of the enhanced photocatalytic activity, with holes (h⁺), superoxide radicals (O₂•⁻), and chlorine radicals (Cl•) identified as key species in the degradation of PFOA. 3.11 Ultra-high performance liquid chromatography (UPLC)-quadrupole time-of-flight (QTOF) mass spectrometry (MS) measurements showed that PFOA and perfluorononanoic acid (PFNA) sequentially degraded via C-F bond cleavage to form short-chain perfluorinated carboxylic acid (PFCA) intermediates, accompanied by the release of fluoride. For 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (HFPO-DA), the main degradation products were perfluoropropionic acid (PFPrA) and trifluoroacetic acid (TFA), also with the release of fluoride. Intermediate degradation products of perfluorinated sulfonic acids indicated that perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) primarily formed short-chain PFCAs, along with the release of fluoride and sulfate. However, perfluorobutanesulfonic acid (PFBS) showed only minor degradation, with no intermediate products detected and only trace amounts of sulfate released. Finally, this study optimized the photocatalytic Apparent quantum yield (AQY) and Electrical energy per order (EEO) for PFOA degradation by BN_AA, achieving values of 1.5% and 35.5 kWh/m³/order, respectively.
(1) Buck, R. C.; Franklin, J.; Berger, U.; Conder, J. M.; Cousins, I. T.; De Voogt, P.; Jensen, A. A.; Kannan, K.; Mabury, S. A.; Van Leeuwen, S. P. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr Environ Assess Manag 2011, 7 (4), 513–541. https://doi.org/10.1002/ieam.258.
(2) Wang, Z.; DeWitt, J. C.; Higgins, C. P.; Cousins, I. T. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environ. Sci. Technol. 2017, 51 (5), 2508–2518. https://doi.org/10.1021/acs.est.6b04806.
(3) Evich, M. G.; Davis, M. J. B.; McCord, J. P.; Acrey, B.; Awkerman, J. A.; Knappe, D. R. U.; Lindstrom, A. B.; Speth, T. F.; Tebes-Stevens, C.; Strynar, M. J.; Wang, Z.; Weber, E. J.; Henderson, W. M.; Washington, J. W. Per- and Polyfluoroalkyl Substances in the Environment. Science 2022, 375 (6580), eabg9065. https://doi.org/10.1126/science.abg9065.
(4) Zareitalabad, P.; Siemens, J.; Hamer, M.; Amelung, W. Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) in Surface Waters, Sediments, Soils and Wastewater – A Review on Concentrations and Distribution Coefficients. Chemosphere 2013, 91 (6), 725–732. https://doi.org/10.1016/j.chemosphere.2013.02.024.
(5) Lohmann, R.; Cousins, I. T.; DeWitt, J. C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lindstrom, A. B.; Miller, M. F.; Ng, C. A.; Patton, S.; Scheringer, M.; Trier, X.; Wang, Z. Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS? Environ. Sci. Technol. 2020, 54 (20), 12820–12828. https://doi.org/10.1021/acs.est.0c03244.
(6) PFAS destruction technologies are starting to emerge. Chemical & Engineering News. https://cen.acs.org/environment/persistent-pollutants/PFAS-destruction-technologies-starting-emerge/100/i1 (accessed 2022-05-27).
(7) Trojanowicz, M.; Bojanowska-Czajka, A.; Bartosiewicz, I.; Kulisa, K. Advanced Oxidation/Reduction Processes Treatment for Aqueous Perfluorooctanoate (PFOA) and Perfluorooctanesulfonate (PFOS) – A Review of Recent Advances. Chemical Engineering Journal 2018, 336, 170–199. https://doi.org/10.1016/j.cej.2017.10.153.
(8) Jo, I.; Pettes, M. T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal Conductivity and Phonon Transport in Suspended Few-Layer Hexagonal Boron Nitride. Nano Lett. 2013, 13 (2), 550–554. https://doi.org/10.1021/nl304060g.
(9) Liu, Z.; Gong, Y.; Zhou, W.; Ma, L.; Yu, J.; Idrobo, J. C.; Jung, J.; MacDonald, A. H.; Vajtai, R.; Lou, J.; Ajayan, P. M. Ultrathin High-Temperature Oxidation-Resistant Coatings of Hexagonal Boron Nitride. Nat Commun 2013, 4 (1), 2541. https://doi.org/10.1038/ncomms3541.
(10) Cassabois, G.; Valvin, P.; Gil, B. Hexagonal Boron Nitride Is an Indirect Bandgap Semiconductor. Nature Photon 2016, 10 (4), 262–266. https://doi.org/10.1038/nphoton.2015.277.
(11) Wu, P.; Zhu, W.; Chao, Y.; Zhang, J.; Zhang, P.; Zhu, H.; Li, C.; Chen, Z.; Li, H.; Dai, S. A Template-Free Solvent-Mediated Synthesis of High Surface Area Boron Nitride Nanosheets for Aerobic Oxidative Desulfurization. Chemical Communications 2016, 52 (1), 144–147. https://doi.org/10.1039/C5CC07830J.
(12) Li, H.; Zhu, S.; Zhang, M.; Wu, P.; Pang, J.; Zhu, W.; Jiang, W.; Li, H. Tuning the Chemical Hardness of Boron Nitride Nanosheets by Doping Carbon for Enhanced Adsorption Capacity. ACS Omega 2017, 2 (9), 5385–5394. https://doi.org/10.1021/acsomega.7b00795.
(13) Han, W.-Q.; Brutchey, R.; Tilley, T. D.; Zettl, A. Activated Boron Nitride Derived from Activated Carbon. Nano Lett. 2004, 4 (1), 173–176. https://doi.org/10.1021/nl034843a.
(14) 龍福君. 以氮化硼光催化降解水中全氟辛酸: 探討異原子摻雜與酸活化及氯離子效應, 國立成功大學, 2023.
(15) Marchesini, S.; Regoutz, A.; Payne, D.; Petit, C. Tunable Porous Boron Nitride: Investigating Its Formation and Its Application for Gas Adsorption. Microporous and Mesoporous Materials 2017, 243, 154–163. https://doi.org/10.1016/j.micromeso.2017.02.010.
(16) Wu, P.; Zhu, W.; Chao, Y.; Zhang, J.; Zhang, P.; Zhu, H.; Li, C.; Chen, Z.; Li, H.; Dai, S. A Template-Free Solvent-Mediated Synthesis of High Surface Area Boron Nitride Nanosheets for Aerobic Oxidative Desulfurization. Chemical Communications 2016, 52 (1), 144–147. https://doi.org/10.1039/C5CC07830J.
(17) Li, Q.; Yang, T.; Yang, Q.; Wang, F.; Chou, K.-C.; Hou, X. Porous Hexagonal Boron Nitride Whiskers Fabricated at Low Temperature for Effective Removal of Organic Pollutants from Water. Ceramics International 2016, 42 (7), 8754–8762. https://doi.org/10.1016/j.ceramint.2016.02.114.
(18) Liu, D.; Lei, W.; Qin, S.; Chen, Y. Template-Free Synthesis of Functional 3D BN Architecture for Removal of Dyes from Water. Sci Rep 2014, 4 (1), 4453. https://doi.org/10.1038/srep04453.
(19) Matović, B.; Luković, J.; Nikolić, M.; Babić, B.; Stanković, N.; Jokić, B.; Jelenković, B. Synthesis and Characterization of Nanocrystaline Hexagonal Boron Nitride Powders: XRD and Luminescence Properties. Ceramics International 2016, 42 (15), 16655–16658. https://doi.org/10.1016/j.ceramint.2016.07.096.
(20) Liu, Q.; Chen, C.; Du, M.; Wu, Y.; Ren, C.; Ding, K.; Song, M.; Huang, C. Porous Hexagonal Boron Nitride Sheets: Effect of Hydroxyl and Secondary Amino Groups on Photocatalytic Hydrogen Evolution. ACS Appl. Nano Mater. 2018, 1 (9), 4566–4575. https://doi.org/10.1021/acsanm.8b00867.
(21) Guo, Y.; Wang, R.; Wang, P.; Rao, L.; Wang, C. Dredged-Sediment-Promoted Synthesis of Boron-Nitride-Based Floating Photocatalyst with Photodegradation of Neutral Red under Ultraviolet-Light Irradiation. ACS Appl. Mater. Interfaces 2018, 10 (5), 4640–4651. https://doi.org/10.1021/acsami.7b15638.
(22) Tian, L.; Li, J.; Liang, F.; Chang, S.; Zhang, H.; Zhang, M.; Zhang, S. Facile Molten Salt Synthesis of Atomically Thin Boron Nitride Nanosheets and Their Co-Catalytic Effect on the Performance of Carbon Nitride Photocatalyst. Journal of Colloid and Interface Science 2019, 536, 664–672. https://doi.org/10.1016/j.jcis.2018.10.098.
(23) Guo, Y.; Wang, R.; Yan, C.; Wang, P.; Rao, L.; Wang, C. Developing Boron Nitride-Pyromellitic Dianhydride Composite for Removal of Aromatic Pollutants from Wastewater via Adsorption and Photodegradation. Chemosphere 2019, 229, 112–124. https://doi.org/10.1016/j.chemosphere.2019.04.196.
(24) He, Z.; Kim, C.; Jeon, T. H.; Choi, W. Hydrogenated Heterojunction of Boron Nitride and Titania Enables the Photocatalytic Generation of H2 in the Absence of Noble Metal Catalysts. Applied Catalysis B: Environmental 2018, 237, 772–782. https://doi.org/10.1016/j.apcatb.2018.06.008.
(25) Fu, X.; Hu, Y.; Zhang, T.; Chen, S. The Role of Ball Milled H-BN in the Enhanced Photocatalytic Activity: A Study Based on the Model of ZnO. Applied Surface Science 2013, 280, 828–835. https://doi.org/10.1016/j.apsusc.2013.05.069.
(26) Xu, H.; Wu, Z.; Ding, M.; Gao, X. Microwave-Assisted Synthesis of Flower-like BN/BiOCl Composites for Photocatalytic Cr(VI) Reduction upon Visible-Light Irradiation. Materials & Design 2017, 114, 129–138. https://doi.org/10.1016/j.matdes.2016.10.057.
(27) Balta, Z.; Simsek, E. B. Uncovering the Systematical Charge Separation Effect of Boron Nitride Quantum Dots on Photocatalytic Performance of BiFeO3 Perovskite towards Degradation of Tetracycline Antibiotic. Journal of Environmental Chemical Engineering 2021, 9 (6), 106567. https://doi.org/10.1016/j.jece.2021.106567.
(28) Kofuji, Y.; Isobe, Y.; Shiraishi, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Hydrogen Peroxide Production on a Carbon Nitride–Boron Nitride-Reduced Graphene Oxide Hybrid Photocatalyst under Visible Light. ChemCatChem 2018, 10 (9), 2070–2077. https://doi.org/10.1002/cctc.201701683.
(29) Chen, T.; Zhang, Q.; Xie, Z.; Tan, C.; Chen, P.; Zeng, Y.; Wang, F.; Liu, H.; Liu, Y.; Liu, G.; Lv, W. Carbon Nitride Modified Hexagonal Boron Nitride Interface as Highly Efficient Blue LED Light-Driven Photocatalyst. Applied Catalysis B: Environmental 2018, 238, 410–421. https://doi.org/10.1016/j.apcatb.2018.07.053.
(30) Duan, L.; Wang, B.; Heck, K.; Guo, S.; Clark, C. A.; Arredondo, J.; Wang, M.; Senftle, T. P.; Westerhoff, P.; Wen, X.; Song, Y.; Wong, M. S. Efficient Photocatalytic PFOA Degradation over Boron Nitride. Environ. Sci. Technol. Lett. 2020, 7 (8), 613–619. https://doi.org/10.1021/acs.estlett.0c00434.
(31) Glüge, J.; Scheringer, M.; Cousins, I. T.; DeWitt, J. C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C. A.; Trier, X.; Wang, Z. An Overview of the Uses of Per- and Polyfluoroalkyl Substances (PFAS). Environ. Sci.: Processes Impacts 2020, 22 (12), 2345–2373. https://doi.org/10.1039/D0EM00291G.
(32) DeWitt, J. C.; Glüge, J.; Cousins, I. T.; Goldenman, G.; Herzke, D.; Lohmann, R.; Miller, M.; Ng, C. A.; Patton, S.; Trier, X.; Vierke, L.; Wang, Z.; Adu-Kumi, S.; Balan, S.; Buser, A. M.; Fletcher, T.; Haug, L. S.; Huang, J.; Kaserzon, S.; Leonel, J.; Sheriff, I.; Shi, Y.-L.; Valsecchi, S.; Scheringer, M. Zürich II Statement on Per- and Polyfluoroalkyl Substances (PFASs): Scientific and Regulatory Needs. Environ. Sci. Technol. Lett. 2024. https://doi.org/10.1021/acs.estlett.4c00147.
(33) 汙染物介紹:全氟/多氟烷基物質 (PFAS). SGS安心資訊平台. https://msn.sgs.com/Knowledge/FOOD/5719 (accessed 2024-07-11).
(34) Fact Sheets – PFAS — Per- and Polyfluoroalkyl Substances. https://pfas-1.itrcweb.org/fact-sheets/?gad_source=1&gclid=Cj0KCQjwv7O0BhDwARIsAC0sjWPZsu2TwVWiZ0iNdvk7vL8kj1iUSD-7IV73Ol7KS9BQPwkb6yyOCuYaAnWaEALw_wcB (accessed 2024-07-10).
(35) Zhou, Q.; Deng, S.; Zhang, Q.; Fan, Q.; Huang, J.; Yu, G. Sorption of Perfluorooctane Sulfonate and Perfluorooctanoate on Activated Sludge. Chemosphere 2010, 81 (4), 453–458. https://doi.org/10.1016/j.chemosphere.2010.08.009.
(36) Flores, C.; Ventura, F.; Martin-Alonso, J.; Caixach, J. Occurrence of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in N.E. Spanish Surface Waters and Their Removal in a Drinking Water Treatment Plant That Combines Conventional and Advanced Treatments in Parallel Lines. Science of The Total Environment 2013, 461–462, 618–626. https://doi.org/10.1016/j.scitotenv.2013.05.026.
(37) 3 PFAS disposal technologies are most promising, US EPA says. Chemical & Engineering News. https://cen.acs.org/environment/pollution/3-PFAS-disposal-technologies-promising/98/web/2020/12 (accessed 2022-05-27).
(38) Wang, S.; Yang, Q.; Chen, F.; Sun, J.; Luo, K.; Yao, F.; Wang, X.; Wang, D.; Li, X.; Zeng, G. Photocatalytic Degradation of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Water: A Critical Review. Chemical Engineering Journal 2017, 328, 927–942. https://doi.org/10.1016/j.cej.2017.07.076.
(39) Huang, D.; Yin, L.; Niu, J. Photoinduced Hydrodefluorination Mechanisms of Perfluorooctanoic Acid by the SiC/Graphene Catalyst. Environ. Sci. Technol. 2016, 50 (11), 5857–5863. https://doi.org/10.1021/acs.est.6b00652.
(40) Chen, Z.; Chen, W.; Liao, G.; Li, X.; Wang, J.; Tang, Y.; Li, L. Flexible Construct of N Vacancies and Hydrophobic Sites on G-C3N4 by F Doping and Their Contribution to PFOA Degradation in Photocatalytic Ozonation. Journal of Hazardous Materials 2022, 428, 128222. https://doi.org/10.1016/j.jhazmat.2022.128222.
(41) Ong, C. B.; Mohammad, A. W.; Ng, L. Y.; Mahmoudi, E.; Azizkhani, S.; Hayati Hairom, N. H. Solar Photocatalytic and Surface Enhancement of ZnO/rGO Nanocomposite: Degradation of Perfluorooctanoic Acid and Dye. Process Safety and Environmental Protection 2017, 112, 298–307. https://doi.org/10.1016/j.psep.2017.04.031.
(42) Song, C.; Chen, P.; Wang, C.; Zhu, L. Photodegradation of Perfluorooctanoic Acid by Synthesized TiO2–MWCNT Composites under 365nm UV Irradiation. Chemosphere 2012, 86 (8), 853–859. https://doi.org/10.1016/j.chemosphere.2011.11.034.
(43) Huang, D.; de Vera, G. A.; Chu, C.; Zhu, Q.; Stavitski, E.; Mao, J.; Xin, H.; Spies, J. A.; Schmuttenmaer, C. A.; Niu, J.; Haller, G. L.; Kim, J.-H. Single-Atom Pt Catalyst for Effective C–F Bond Activation via Hydrodefluorination. ACS Catal. 2018, 8 (10), 9353–9358. https://doi.org/10.1021/acscatal.8b02660.
(44) Song, Z.; Dong, X.; Wang, N.; Zhu, L.; Luo, Z.; Fang, J.; Xiong, C. Efficient Photocatalytic Defluorination of Perfluorooctanoic Acid over BiOCl Nanosheets via a Hole Direct Oxidation Mechanism. Chemical Engineering Journal 2017, 317, 925–934. https://doi.org/10.1016/j.cej.2017.02.126.
(45) Li, X.; Zhang, P.; Jin, L.; Shao, T.; Li, Z.; Cao, J. Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism. Environ. Sci. Technol. 2012, 46 (10), 5528–5534. https://doi.org/10.1021/es204279u.
(46) Li, Z.; Zhang, P.; Shao, T.; Li, X. In2O3 Nanoporous Nanosphere: A Highly Efficient Photocatalyst for Decomposition of Perfluorooctanoic Acid. Applied Catalysis B: Environmental 2012, 125, 350–357. https://doi.org/10.1016/j.apcatb.2012.06.017.
(47) Shao, T.; Zhang, P.; Jin, L.; Li, Z. Photocatalytic Decomposition of Perfluorooctanoic Acid in Pure Water and Sewage Water by Nanostructured Gallium Oxide. Applied Catalysis B: Environmental 2013, 142–143, 654–661. https://doi.org/10.1016/j.apcatb.2013.05.074.
(48) Huang, J.; Wang, X.; Pan, Z.; Li, X.; Ling, Y.; Li, L. Efficient Degradation of Perfluorooctanoic Acid (PFOA) by Photocatalytic Ozonation. Chemical Engineering Journal 2016, 296, 329–334. https://doi.org/10.1016/j.cej.2016.03.116.
(49) Wang, J.; Cao, C.; Zhang, Y.; Zhang, Y.; Zhu, L. Underneath Mechanisms into the Super Effective Degradation of PFOA by BiOF Nanosheets with Tunable Oxygen Vacancies on Exposed (101) Facets. Applied Catalysis B: Environmental 2021, 286, 119911. https://doi.org/10.1016/j.apcatb.2021.119911.
(50) Duan, L.; Wang, B.; Heck, K. N.; Clark, C. A.; Wei, J.; Wang, M.; Metz, J.; Wu, G.; Tsai, A.-L.; Guo, S.; Arredondo, J.; Mohite, A. D.; Senftle, T. P.; Westerhoff, P.; Alvarez, P.; Wen, X.; Song, Y.; Wong, M. S. Titanium Oxide Improves Boron Nitride Photocatalytic Degradation of Perfluorooctanoic Acid. Chemical Engineering Journal 2022, 448, 137735. https://doi.org/10.1016/j.cej.2022.137735.
(51) Yuan, Y.; Feng, L.; He, X.; Liu, X.; Xie, N.; Ai, Z.; Zhang, L.; Gong, J. Efficient Removal of PFOA with an In2O3/Persulfate System under Solar Light via the Combined Process of Surface Radicals and Photogenerated Holes. Journal of Hazardous Materials 2022, 423, 127176. https://doi.org/10.1016/j.jhazmat.2021.127176.
(52) Li, Z.; Zhang, P.; Li, J.; Shao, T.; Jin, L. Synthesis of In2O3-Graphene Composites and Their Photocatalytic Performance towards Perfluorooctanoic Acid Decomposition. Journal of Photochemistry and Photobiology A: Chemistry 2013, 271, 111–116. https://doi.org/10.1016/j.jphotochem.2013.08.012.
(53) Liu, J.; Guo, C.; Wu, N.; Li, C.; Qu, R.; Wang, Z.; Jin, R.; Qiao, Y.; He, Z.; Lu, J.; Feng, X.; Zhang, Y.; Wang, A.; Gao, J. Efficient Photocatalytic Degradation of PFOA in N-Doped In2O3/Simulated Sunlight Irradiation System and Its Mechanism. Chemical Engineering Journal 2022, 435, 134627. https://doi.org/10.1016/j.cej.2022.134627.
(54) Xu, C.; Qiu, P.; Chen, H.; Jiang, F. Platinum Modified Indium Oxide Nanorods with Enhanced Photocatalytic Activity on Degradation of Perfluorooctanoic Acid (PFOA). Journal of the Taiwan Institute of Chemical Engineers 2017, 80, 761–768. https://doi.org/10.1016/j.jtice.2017.09.018.
(55) Zhao, B.; Lv, M.; Zhou, L. Photocatalytic Degradation of Perfluorooctanoic Acid with β-Ga2O3 in Anoxic Aqueous Solution. Journal of Environmental Sciences 2012, 24 (4), 774–780. https://doi.org/10.1016/S1001-0742(11)60818-8.
(56) Shao, T.; Zhang, P.; Jin, L.; Li, Z. Photocatalytic Decomposition of Perfluorooctanoic Acid in Pure Water and Sewage Water by Nanostructured Gallium Oxide. Applied Catalysis B: Environmental 2013, 142–143, 654–661. https://doi.org/10.1016/j.apcatb.2013.05.074.
(57) Xu, B.; Zhou, J. L.; Altaee, A.; Ahmed, M. B.; Johir, M. A. H.; Ren, J.; Li, X. Improved Photocatalysis of Perfluorooctanoic Acid in Water and Wastewater by Ga2O3/UV System Assisted by Peroxymonosulfate. Chemosphere 2020, 239, 124722. https://doi.org/10.1016/j.chemosphere.2019.124722.
(58) Xu, B.; Ahmed, M. B.; Zhou, J. L.; Altaee, A. Visible and UV Photocatalysis of Aqueous Perfluorooctanoic Acid by TiO2 and Peroxymonosulfate: Process Kinetics and Mechanistic Insights. Chemosphere 2020, 243, 125366. https://doi.org/10.1016/j.chemosphere.2019.125366.
(59) Gatto, S.; Sansotera, M.; Persico, F.; Gola, M.; Pirola, C.; Panzeri, W.; Navarrini, W.; Bianchi, C. L. Surface Fluorination on TiO2 Catalyst Induced by Photodegradation of Perfluorooctanoic Acid. Catalysis Today 2015, 241, 8–14. https://doi.org/10.1016/j.cattod.2014.04.031.
(60) Li, M.; Yu, Z.; Liu, Q.; Sun, L.; Huang, W. Photocatalytic Decomposition of Perfluorooctanoic Acid by Noble Metallic Nanoparticles Modified TiO2. Chemical Engineering Journal 2016, 286, 232–238. https://doi.org/10.1016/j.cej.2015.10.037.
(61) Chen, M.-J.; Lo, S.-L.; Lee, Y.-C.; Kuo, J.; Wu, C.-H. Decomposition of Perfluorooctanoic Acid by Ultraviolet Light Irradiation with Pb-Modified Titanium Dioxide. Journal of Hazardous Materials 2016, 303, 111–118. https://doi.org/10.1016/j.jhazmat.2015.10.011.
(62) Song, H.; Wang, Y.; Ling, Z.; Zu, D.; Li, Z.; Shen, Y.; Li, C. Enhanced Photocatalytic Degradation of Perfluorooctanoic Acid by Ti3C2 MXene-Derived Heterojunction Photocatalyst: Application of Intercalation Strategy in DESs. Science of The Total Environment 2020, 746, 141009. https://doi.org/10.1016/j.scitotenv.2020.141009.
(63) Gomez-Ruiz, B.; Ribao, P.; Diban, N.; Rivero, M. J.; Ortiz, I.; Urtiaga, A. Photocatalytic Degradation and Mineralization of Perfluorooctanoic Acid (PFOA) Using a Composite TiO2 −rGO Catalyst. Journal of Hazardous Materials 2018, 344, 950–957. https://doi.org/10.1016/j.jhazmat.2017.11.048.
(64) Rivero, M. J.; Ribao, P.; Gomez-Ruiz, B.; Urtiaga, A.; Ortiz, I. Comparative Performance of TiO2-rGO Photocatalyst in the Degradation of Dichloroacetic and Perfluorooctanoic Acids. Separation and Purification Technology 2020, 240, 116637. https://doi.org/10.1016/j.seppur.2020.116637.
(65) Weon, S.; Suh, M.-J.; Chu, C.; Huang, D.; Stavitski, E.; Kim, J.-H. Site-Selective Loading of Single-Atom Pt on TiO2 for Photocatalytic Oxidation and Reductive Hydrodefluorination. ACS EST Eng. 2021, 1 (3), 512–522. https://doi.org/10.1021/acsestengg.0c00210.
(66) Wu, D.; Li, X.; Tang, Y.; Lu, P.; Chen, W.; Xu, X.; Li, L. Mechanism Insight of PFOA Degradation by ZnO Assisted-Photocatalytic Ozonation: Efficiency and Intermediates. Chemosphere 2017, 180, 247–252. https://doi.org/10.1016/j.chemosphere.2017.03.127.
(67) Huang, D.; de Vera, G. A.; Chu, C.; Zhu, Q.; Stavitski, E.; Mao, J.; Xin, H.; Spies, J. A.; Schmuttenmaer, C. A.; Niu, J.; Haller, G. L.; Kim, J.-H. Single-Atom Pt Catalyst for Effective C–F Bond Activation via Hydrodefluorination. ACS Catal. 2018, 8 (10), 9353–9358. https://doi.org/10.1021/acscatal.8b02660.
(68) Wu, Y.; Hu, Y.; Han, M.; Ouyang, Y.; Xia, L.; Huang, X.; Hu, Z.; Li, C. Mechanism Insights into the Facet-Dependent Photocatalytic Degradation of Perfluorooctanoic Acid on BiOCl Nanosheets. Chemical Engineering Journal 2021, 425, 130672. https://doi.org/10.1016/j.cej.2021.130672.
(69) Liao, H.; Zhong, J.; Li, J. Tunable Oxygen Vacancies Facilitated Removal of PFOA and RhB over BiOCl Prepared with Alcohol Ether Sulphate. Applied Surface Science 2022, 590, 152891. https://doi.org/10.1016/j.apsusc.2022.152891.
(70) Song, Z.; Dong, X.; Fang, J.; Xiong, C.; Wang, N.; Tang, X. Improved Photocatalytic Degradation of Perfluorooctanoic Acid on Oxygen Vacancies-Tunable Bismuth Oxychloride Nanosheets Prepared by a Facile Hydrolysis. Journal of Hazardous Materials 2019, 377, 371–380. https://doi.org/10.1016/j.jhazmat.2019.05.084.
(71) Li, T.; Wang, C.; Wang, T.; Zhu, L. Highly Efficient Photocatalytic Degradation toward Perfluorooctanoic Acid by Bromine Doped BiOI with High Exposure of (001) Facet. Applied Catalysis B: Environmental 2020, 268, 118442. https://doi.org/10.1016/j.apcatb.2019.118442.
(72) Sahu, S. P.; Qanbarzadeh, M.; Ateia, M.; Torkzadeh, H.; Maroli, A. S.; Cates, E. L. Rapid Degradation and Mineralization of Perfluorooctanoic Acid by a New Petitjeanite Bi3O(OH)(PO4)2 Microparticle Ultraviolet Photocatalyst. Environ. Sci. Technol. Lett. 2018, 5 (8), 533–538. https://doi.org/10.1021/acs.estlett.8b00395.
(73) Wang, J.; Wang, Y.; Cao, C.; Zhang, Y.; Zhang, Y.; Zhu, L. Decomposition of Highly Persistent Perfluorooctanoic Acid by Hollow Bi/BiOI1-xFx: Synergistic Effects of Surface Plasmon Resonance and Modified Band Structures. Journal of Hazardous Materials 2021, 402, 123459. https://doi.org/10.1016/j.jhazmat.2020.123459.
(74) Shang, E.; Li, Y.; Niu, J.; Li, S.; Zhang, G.; Wang, X. Photocatalytic Degradation of Perfluorooctanoic Acid over Pb-BiFeO3/rGO Catalyst: Kinetics and Mechanism. Chemosphere 2018, 211, 34–43. https://doi.org/10.1016/j.chemosphere.2018.07.130.
(75) Wang, B.; Chen, Y.; Samba, J.; Heck, K.; Huang, X.; Lee, J.; Metz, J.; Bhati, M.; Fortner, J.; Li, Q.; Westerhoff, P.; Alvarez, P.; Senftle, T. P.; Wong, M. S. Surface Hydrophobicity of Boron Nitride Promotes PFOA Photocatalytic Degradation. Chemical Engineering Journal 2024, 483, 149134. https://doi.org/10.1016/j.cej.2024.149134.
(76) Samuel, M. S.; Shang, M.; Niu, J. Photocatalytic Degradation of Perfluoroalkyl Substances in Water by Using a Duo-Functional Tri-Metallic-Oxide Hybrid Catalyst. Chemosphere 2022, 293, 133568. https://doi.org/10.1016/j.chemosphere.2022.133568.
(77) Tang, H.; Zhang, W.; Meng, Y.; Xia, S. A Direct Z-Scheme Heterojunction with Boosted Transportation of Photogenerated Charge Carriers for Highly Efficient Photodegradation of PFOA: Reaction Kinetics and Mechanism. Applied Catalysis B: Environmental 2021, 285, 119851. https://doi.org/10.1016/j.apcatb.2020.119851.
(78) Yang, H.; Park, S.-J.; Lee, C.-G. Enhanced Removal of Perfluoroalkyl Substances Using MMO-TiO2 Visible Light Photocatalyst. Alexandria Engineering Journal 2024, 87, 31–38. https://doi.org/10.1016/j.aej.2023.12.008.
(79) Choong, C. E.; Kim, M.; Lim, J. S.; Hong, Y. J.; Lee, G. J.; Chae, K. H.; Nah, I. W.; Yoon, Y.; Choi, E. H.; Jang, M. Understanding the Synergistic Effect of Hydrated Electron Generation from Argon Plasma Catalysis over Bi2O3/CeO2 for Perfluorooctanoic Acid Dehalogenation: Mechanism and DFT Study. Applied Catalysis B: Environmental 2024, 343, 123403. https://doi.org/10.1016/j.apcatb.2023.123403.
(80) Li, M.; Yu, Z.; Liu, Q.; Sun, L.; Huang, W. Photocatalytic Decomposition of Perfluorooctanoic Acid by Noble Metallic Nanoparticles Modified TiO2. Chemical Engineering Journal 2016, 286, 232–238. https://doi.org/10.1016/j.cej.2015.10.037.
(81) Wang, J.; Cao, C.; Wang, Y.; Wang, Y.; Sun, B.; Zhu, L. In Situ Preparation of P-n BiOI@Bi5O7I Heterojunction for Enhanced PFOA Photocatalytic Degradation under Simulated Solar Light Irradiation. Chemical Engineering Journal 2020, 391, 123530. https://doi.org/10.1016/j.cej.2019.123530.
(82) Guin, J. P.; Sullivan, J. A.; Muldoon, J.; Thampi, K. R. Visible Light Induced Degradation of Perfluorooctanoic Acid Using Iodine Deficient Bismuth Oxyiodide Photocatalyst. Journal of Hazardous Materials 2023, 458, 131897. https://doi.org/10.1016/j.jhazmat.2023.131897.
(83) Arana Juve, J.-M.; Baami González, X.; Bai, L.; Xie, Z.; Shang, Y.; Saad, A.; Gonzalez-Olmos, R.; Wong, M. S.; Ateia, M.; Wei, Z. Size-Selective Trapping and Photocatalytic Degradation of PFOA in Fe-Modified Zeolite Frameworks. Applied Catalysis B: Environment and Energy 2024, 349, 123885. https://doi.org/10.1016/j.apcatb.2024.123885.
(84) Zinc oxide@citric acid-modified graphitic carbon nitride nanocomposites for adsorption and photocatalytic degradation of perfluorooctanoic acid | Advanced Composites and Hybrid Materials. https://link.springer.com/article/10.1007/s42114-024-00867-w (accessed 2024-03-24).
(85) Wen, J.; Li, H.; Ottosen, L. D. M.; Lundqvist, J.; Vergeynst, L. Comparison of the Photocatalytic Degradability of PFOA, PFOS and GenX Using Fe-Zeolite in Water. Chemosphere 2023, 344, 140344. https://doi.org/10.1016/j.chemosphere.2023.140344.
(86) Zhu, Y.; Ji, H.; He, K.; Blaney, L.; Xu, T.; Zhao, D. Photocatalytic Degradation of GenX in Water Using a New Adsorptive Photocatalyst. Water Research 2022, 220, 118650. https://doi.org/10.1016/j.watres.2022.118650.
(87) Lashuk, B.; Pineda, M.; AbuBakr, S.; Boffito, D.; Yargeau, V. Application of Photocatalytic Ozonation with a WO3/TiO2 Catalyst for PFAS Removal under UVA/Visible Light. Science of The Total Environment 2022, 843, 157006. https://doi.org/10.1016/j.scitotenv.2022.157006.
(88) Photodegradation of Perfluorooctanesulfonic Acid on Fe-Zeolites in Water | Environmental Science & Technology. https://pubs.acs.org/doi/full/10.1021/acs.est.0c04558 (accessed 2024-06-01).
(89) Zhu, Y.; Xu, T.; Zhao, D.; Li, F.; Liu, W.; Wang, B.; An, B. Adsorption and Solid-Phase Photocatalytic Degradation of Perfluorooctane Sulfonate in Water Using Gallium-Doped Carbon-Modified Titanate Nanotubes. Chemical Engineering Journal 2021, 421, 129676. https://doi.org/10.1016/j.cej.2021.129676.
(90) Qanbarzadeh, M.; DiGiacomo, L.; Bouteh, E.; Alhamdan, E. Z.; Mason, M. M.; Wang, B.; Wong, M. S.; Cates, E. L. An Ultraviolet/Boron Nitride Photocatalytic Process Efficiently Degrades Poly-/Perfluoroalkyl Substances in Complex Water Matrices. Environ. Sci. Technol. Lett. 2023, 10 (8), 705–710. https://doi.org/10.1021/acs.estlett.3c00363.
(91) de S. Furtado, R. X.; Sabatini, C. A.; Zaiat, M.; Azevedo, E. B. 使用響應曲面法 (RSM)透過優化的多相光催化 (TiO 2 /UV)降解全氟辛烷磺酸 (PFOS). Journal of Water Process Engineering 2021, 41, 101986. https://doi.org/10.1016/j.jwpe.2021.101986.
(92) Hori, H.; Nagaoka, Y.; Murayama, M.; Kutsuna, S. Efficient Decomposition of Perfluorocarboxylic Acids and Alternative Fluorochemical Surfactants in Hot Water. Environ. Sci. Technol. 2008, 42 (19), 7438–7443. https://doi.org/10.1021/es800832p.
(93) Huang, J.; Wang, X.; Pan, Z.; Li, X.; Ling, Y.; Li, L. Efficient Degradation of Perfluorooctanoic Acid (PFOA) by Photocatalytic Ozonation. Chemical Engineering Journal 2016, 296, 329–334. https://doi.org/10.1016/j.cej.2016.03.116.
(94) Song, D.; Qiao, B.; Wang, X.; Zhao, L.; Li, X.; Zhang, P.; Yao, Y.; Chen, H.; Zhu, L.; Sun, H. Degradation of Perfluorooctanoic Acid by Chlorine Radical Triggered Electrochemical Oxidation System. Environ. Sci. Technol. 2023, 57 (25), 9416–9425. https://doi.org/10.1021/acs.est.3c02025.
(95) Yang, L.; He, L.; Xue, J.; Ma, Y.; Xie, Z.; Wu, L.; Huang, M.; Zhang, Z. Persulfate-Based Degradation of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) in Aqueous Solution: Review on Influences, Mechanisms and Prospective. Journal of Hazardous Materials 2020, 393, 122405. https://doi.org/10.1016/j.jhazmat.2020.122405.
(96) Pica, N. E.; Funkhouser, J.; Yin, Y.; Zhang, Z.; Ceres, D. M.; Tong, T.; Blotevogel, J. Electrochemical Oxidation of Hexafluoropropylene Oxide Dimer Acid (GenX): Mechanistic Insights and Efficient Treatment Train with Nanofiltration. Environ. Sci. Technol. 2019, 53 (21), 12602–12609. https://doi.org/10.1021/acs.est.9b03171.
(97) Yamamoto, T.; Noma, Y.; Sakai, S.; Shibata, Y. Photodegradation of Perfluorooctane Sulfonate by UV Irradiation in Water and Alkaline 2-Propanol. Environ. Sci. Technol. 2007, 41 (16), 5660–5665. https://doi.org/10.1021/es0706504.
(98) Qian, L.; Kopinke, F.-D.; Georgi, A. Photodegradation of Perfluorooctanesulfonic Acid on Fe-Zeolites in Water. Environ. Sci. Technol. 2021, 55 (1), 614–622. https://doi.org/10.1021/acs.est.0c04558.
(99) Javed, H.; Metz, J.; Eraslan, T. C.; Mathieu, J.; Wang, B.; Wu, G.; Tsai, A.-L.; Wong, M. S.; Alvarez, P. J. J. Discerning the Relevance of Superoxide in PFOA Degradation. Environ. Sci. Technol. Lett. 2020, 7 (9), 653–658. https://doi.org/10.1021/acs.estlett.0c00505.
(100) Metz, J.; Zuo, P.; Wang, B.; Wong, M. S.; Alvarez, P. J. J. Perfluorooctanoic Acid Degradation by UV/Chlorine. Environ. Sci. Technol. Lett. 2022, 9 (8), 673–679. https://doi.org/10.1021/acs.estlett.2c00452.
(101) Bao, Y.; Deng, S.; Jiang, X.; Qu, Y.; He, Y.; Liu, L.; Chai, Q.; Mumtaz, M.; Huang, J.; Cagnetta, G.; Yu, G. Degradation of PFOA Substitute: GenX (HFPO–DA Ammonium Salt): Oxidation with UV/Persulfate or Reduction with UV/Sulfite? Environ. Sci. Technol. 2018, 52 (20), 11728–11734. https://doi.org/10.1021/acs.est.8b02172.
(102) 水質-類別查詢-檢測技術與方法-核心業務與研究|國家環境研究院全球資訊網. 國家環境研究院全球資訊網. https://www.moenv.gov.tw/nera/32A85B63C9EC18C0/6a0f97db-e77f-4900-b7af-edd17108de4d (accessed 2024-07-13).
(103) 朱,品妃. 合成非金屬氮化硼光催化劑及探討酸活化效應於提升光催化降解水中全氟辛酸之研究, 國立成功大學, 2022.
(104) Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence | Environmental Science & Technology. https://pubs.acs.org/doi/full/10.1021/es5002105 (accessed 2024-06-27).
(105) Wang, Y.-Q.; Hu, L.-X.; Liu, T.; Zhao, J.-H.; Yang, Y.-Y.; Liu, Y.-S.; Ying, G.-G. Per- and Polyfluoralkyl Substances (PFAS) in Drinking Water System: Target and Non-Target Screening and Removal Assessment. Environment International 2022, 163, 107219. https://doi.org/10.1016/j.envint.2022.107219.
(106) Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat Methods 2015, 12 (6), 523–526. https://doi.org/10.1038/nmeth.3393.
(107) MassBank consortium and its contributors. MassBank/MassBank-Data: Release Version 2024.06, 2024. https://doi.org/10.5281/ZENODO.11487030.
(108) Mohammed Taha, H.; Aalizadeh, R.; Alygizakis, N.; Antignac, J.-P.; Arp, H. P. H.; Bade, R.; Baker, N.; Belova, L.; Bijlsma, L.; Bolton, E. E.; Brack, W.; Celma, A.; Chen, W.-L.; Cheng, T.; Chirsir, P.; Čirka, Ľ.; D’Agostino, L. A.; Djoumbou Feunang, Y.; Dulio, V.; Fischer, S.; Gago-Ferrero, P.; Galani, A.; Geueke, B.; Głowacka, N.; Glüge, J.; Groh, K.; Grosse, S.; Haglund, P.; Hakkinen, P. J.; Hale, S. E.; Hernandez, F.; Janssen, E. M.-L.; Jonkers, T.; Kiefer, K.; Kirchner, M.; Koschorreck, J.; Krauss, M.; Krier, J.; Lamoree, M. H.; Letzel, M.; Letzel, T.; Li, Q.; Little, J.; Liu, Y.; Lunderberg, D. M.; Martin, J. W.; McEachran, A. D.; McLean, J. A.; Meier, C.; Meijer, J.; Menger, F.; Merino, C.; Muncke, J.; Muschket, M.; Neumann, M.; Neveu, V.; Ng, K.; Oberacher, H.; O’Brien, J.; Oswald, P.; Oswaldova, M.; Picache, J. A.; Postigo, C.; Ramirez, N.; Reemtsma, T.; Renaud, J.; Rostkowski, P.; Rüdel, H.; Salek, R. M.; Samanipour, S.; Scheringer, M.; Schliebner, I.; Schulz, W.; Schulze, T.; Sengl, M.; Shoemaker, B. A.; Sims, K.; Singer, H.; Singh, R. R.; Sumarah, M.; Thiessen, P. A.; Thomas, K. V.; Torres, S.; Trier, X.; van Wezel, A. P.; Vermeulen, R. C. H.; Vlaanderen, J. J.; von der Ohe, P. C.; Wang, Z.; Williams, A. J.; Willighagen, E. L.; Wishart, D. S.; Zhang, J.; Thomaidis, N. S.; Hollender, J.; Slobodnik, J.; Schymanski, E. L. The NORMAN Suspect List Exchange (NORMAN-SLE): Facilitating European and Worldwide Collaboration on Suspect Screening in High Resolution Mass Spectrometry. Environ Sci Eur 2022, 34 (1), 104. https://doi.org/10.1186/s12302-022-00680-6.
(109) mzCloud – 進階質譜資料庫. https://www.mzcloud.org/ (accessed 2024-07-13).
(110) 人類代謝組資料庫. https://hmdb.ca/ (accessed 2024-07-13).
(111) Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48 (4), 2097–2098. https://doi.org/10.1021/es5002105.
(112) Röhler, L.; Schlabach, M.; Haglund, P.; Breivik, K.; Kallenborn, R.; Bohlin-Nizzetto, P. Non-Target and Suspect Characterisation of Organic Contaminants in Arctic Air – Part 2: Application of a New Tool for Identification and Prioritisation of Chemicals of Emerging Arctic Concern in Air. Atmospheric Chemistry and Physics 2020, 20 (14), 9031–9049. https://doi.org/10.5194/acp-20-9031-2020.
(113) Bulman, D. M.; Mezyk, S. P.; Remucal, C. K. The Impact of pH and Irradiation Wavelength on the Production of Reactive Oxidants during Chlorine Photolysis. Environ. Sci. Technol. 2019, 53 (8), 4450–4459. https://doi.org/10.1021/acs.est.8b07225.
(114) Ukeda, H.; Maeda, S.; Ishii, T.; Sawamura, M. Spectrophotometric Assay for Superoxide Dismutase Based on Tetrazolium Salt 3′-{1-[(Phenylamino)-Carbonyl]-3,4-Tetrazolium}-Bis(4-Methoxy-6-Nitro)Benzenesulfonic Acid Hydrate Reduction by Xanthine–Xanthine Oxidase. Analytical Biochemistry 1997, 251 (2), 206–209. https://doi.org/10.1006/abio.1997.2273.
(115) Cho, M.; Chung, H.; Choi, W.; Yoon, J. Linear Correlation between Inactivation of E. Coli and OH Radical Concentration in TiO2 Photocatalytic Disinfection. Water Research 2004, 38 (4), 1069–1077. https://doi.org/10.1016/j.watres.2003.10.029.
(116) Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C. Determination of the Acidic Sites of Purified Single-Walled Carbon Nanotubes by Acid–Base Titration. Chemical Physics Letters 2001, 345 (1), 25–28. https://doi.org/10.1016/S0009-2614(01)00851-X.
(117) Londhe, K.; Lee, C.-S.; Zhang, Y.; Grdanovska, S.; Kroc, T.; Cooper, C. A.; Venkatesan, A. K. Energy Evaluation of Electron Beam Treatment of Perfluoroalkyl Substances in Water: A Critical Review. ACS EST Eng. 2021, 1 (5), 827–841. https://doi.org/10.1021/acsestengg.0c00222.
(118) Weng, Q.; Kvashnin, D. G.; Wang, X.; Cretu, O.; Yang, Y.; Zhou, M.; Zhang, C.; Tang, D.-M.; Sorokin, P. B.; Bando, Y.; Golberg, D. Tuning of the Optical, Electronic, and Magnetic Properties of Boron Nitride Nanosheets with Oxygen Doping and Functionalization. Advanced Materials 2017, 29 (28), 1700695. https://doi.org/10.1002/adma.201700695.
(119) Yang, F.; McQuain, A. D.; Kumari, A.; Gundurao, D.; Liu, H.; Li, L. Understanding the Intrinsic Water Wettability of Hexagonal Boron Nitride. Langmuir 2024, 40 (12), 6445–6452. https://doi.org/10.1021/acs.langmuir.3c04035.
(120) Bulman, D. M.; Mezyk, S. P.; Remucal, C. K. The Impact of pH and Irradiation Wavelength on the Production of Reactive Oxidants during Chlorine Photolysis. Environ. Sci. Technol. 2019, 53 (8), 4450–4459. https://doi.org/10.1021/acs.est.8b07225.
(121) Zhang, K.; Parker, K. M. Halogen Radical Oxidants in Natural and Engineered Aquatic Systems. Environ. Sci. Technol. 2018, 52 (17), 9579–9594. https://doi.org/10.1021/acs.est.8b02219.
(122) Fang, J.; Fu, Y.; Shang, C. The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System. Environ. Sci. Technol. 2014, 48 (3), 1859–1868. https://doi.org/10.1021/es4036094.
(123) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (⋅OH/⋅O− in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17 (2), 513–886. https://doi.org/doi:10.1063/1.555805.
(124) Bentel, M. J.; Yu, Y.; Xu, L.; Li, Z.; Wong, B. M.; Men, Y.; Liu, J. Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management. Environ. Sci. Technol. 2019, 53 (7), 3718–3728. https://doi.org/10.1021/acs.est.8b06648.
(125) Chowdhury, N.; Prabakar, S.; Choi, H. Dependency of the Photocatalytic and Photochemical Decomposition of Per- and Polyfluoroalkyl Substances (PFAS) on Their Chain Lengths, Functional Groups, and Structural Properties. Water Science and Technology 2021, 84 (12), 3738–3754. https://doi.org/10.2166/wst.2021.458.
(126) Bao, Y.; Deng, S.; Jiang, X.; Qu, Y.; He, Y.; Liu, L.; Chai, Q.; Mumtaz, M.; Huang, J.; Cagnetta, G.; Yu, G. Degradation of PFOA Substitute: GenX (HFPO–DA Ammonium Salt): Oxidation with UV/Persulfate or Reduction with UV/Sulfite? Environ. Sci. Technol. 2018, 52 (20), 11728–11734. https://doi.org/10.1021/acs.est.8b02172.
(127) Duan, L.; Wang, B.; Heck, K.; Guo, S.; Clark, C. A.; Arredondo, J.; Wang, M.; Senftle, T. P.; Westerhoff, P.; Wen, X.; Song, Y.; Wong, M. S. Efficient Photocatalytic PFOA Degradation over Boron Nitride. Environ. Sci. Technol. Lett. 2020, 7 (8), 613–619. https://doi.org/10.1021/acs.estlett.0c00434.
(128) Lashuk, B.; Pineda, M.; AbuBakr, S.; Boffito, D.; Yargeau, V. Application of Photocatalytic Ozonation with a WO3/TiO2 Catalyst for PFAS Removal under UVA/Visible Light. Science of The Total Environment 2022, 843, 157006. https://doi.org/10.1016/j.scitotenv.2022.157006.
(129) Zhu, Y.; Ji, H.; He, K.; Blaney, L.; Xu, T.; Zhao, D. Photocatalytic Degradation of GenX in Water Using a New Adsorptive Photocatalyst. Water Research 2022, 220, 118650. https://doi.org/10.1016/j.watres.2022.118650.
(130) Singh, R. K.; Fernando, S.; Baygi, S. F.; Multari, N.; Thagard, S. M.; Holsen, T. M. Breakdown Products from Perfluorinated Alkyl Substances (PFAS) Degradation in a Plasma-Based Water Treatment Process. Environ. Sci. Technol. 2019, 53 (5), 2731–2738. https://doi.org/10.1021/acs.est.8b07031.
(131) Assessment of perfluorohexane sulfonic acid (PFHxS)-related compounds degradation potential: Computational and experimental approaches. Journal of Hazardous Materials 2022, 436, 129240. https://doi.org/10.1016/j.jhazmat.2022.129240.
(132) Lee, Y.-C.; Liu, Y.-H.; Lin, J.-C.; Hu, C.-Y.; Kuo, J.; Lin, Y.-C.; Lo, S.-L. UV/Sulfite Reduction Kinetics of Perfluorobutane Sulfonic Acid (PFBS), Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA). Separation and Purification Technology 2024, 347, 127505. https://doi.org/10.1016/j.seppur.2024.127505.
(133) Xu, B.; Zhou, J. L.; Altaee, A.; Ahmed, M. B.; Johir, M. A. H.; Ren, J.; Li, X. Improved Photocatalysis of Perfluorooctanoic Acid in Water and Wastewater by Ga2O3/UV System Assisted by Peroxymonosulfate. Chemosphere 2020, 239, 124722. https://doi.org/10.1016/j.chemosphere.2019.124722.
校內:2029-08-28公開