簡易檢索 / 詳目顯示

研究生: 陳建智
Chen, Chien-Chih
論文名稱: 應用於感應加熱之全橋相移換流器
A Full-Bridge Phase-Shifted Inverter for Induction Heating
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 62
中文關鍵詞: 感應加熱相移式脈波寬度調變零電壓切換負載並聯諧振
外文關鍵詞: induction heating, phase-shifted pulse width modulation, zero voltage switching, load parallel resonance
相關次數: 點閱:102下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文擬研製一應用於感應加熱之全橋相移式負載並聯諧振換流器,其電路架構為傳統全橋換流器結合相移式脈波寬度調變技術,並利用功率變壓器之漏感及功率開關元件上之寄生電容產生諧振,設計出具零電壓切換特性之感應加熱器。而諧振電容與加熱負載形成一等效R-L-C並聯諧振電路,當電路發生諧振時,會有最大功率轉移之效果,致使加熱負載達到加熱處理之目的。本文首先介紹感應加熱之基本理論,接著對本文研究之電路之動作模式進行分析,並設計主電路功率元件之參數。最後實作出一輸入電壓500 Vdc、輸出電壓50 Vrms,ac、輸出功率2 kW及切換頻率50 kHz之雛型電路,並由實驗結果驗證本文之理論分析。

    The main purpose of this thesis is to study and implement a full-bridge phase-shifted load-parallel-resonant inverter for induction heating. Zero-voltage-switching operation of all switches can be achieved with stray components of the power transformer and four power switches. Parallel resonance occurs between the load and the resonant capacitor at a resonant frequency equal to the switching frequency, which results in maximum power transfer for induction heating. In this thesis, first, the basic theory of induction heating is introduced. Second, the analysis of operating principles of full-bridge phase-shifted load-parallel-resonant inverter is performed. Then, the design procedure is described. Finally, a prototype of the inverter with input voltage 500 Vdc, output voltage 50 Vrms,ac, and output power 2 kW is implemented to verify the theoretical analysis.

    中文摘要..........................I 英文延伸摘要........................II 誌謝............................VI 目錄............................VII 圖目錄...........................XI 表目錄...........................XIII 第一章 緒論 1.1研究背景與目的....................1 1.2論文大綱......................4 第二章 感應加熱基本理論與負載特性分析 2.1感應加熱基本原理..................5 2.2感應加熱器之設計考量................7 2.2.1系統頻率與功率..................7 2.2.2加熱時間.....................9 2.2.3金屬加工物件之電阻係數..............9 2.2.4金屬加工物件之相對導磁係數............10 2.2.5溫度分佈.....................12 2.3電磁效應......................14 2.3.1集膚效應....................14 2.3.2鄰近效應....................15 2.3.3磁場集中效應..................16 2.3.4邊界效應....................17 2.4焦耳效應......................18 2.4.1磁滯損.....................18 2.4.2渦流損.....................19 2.5加熱負載之等效模型.................20 2.6感應加熱之應用與特點................24 第三章 全橋相移式負載並聯諧振換流器 3.1柔性切換技術....................25 3.2主電路架構.....................27 3.3基本動作原理與模式分析...............30 3.3.1模式I (t0 < t < t1).................30 3.3.2模式II (t1 < t < t2).................31 3.3.3模式III (t2 < t < t3)................32 3.3.4模式IV (t3 < t < t4)................33 3.3.5模式V (t4 < t < t5).................34 3.3.6模式VI (t5 < t < t6)................35 3.3.7模式VII (t6 < t < t7)................36 3.3.8模式VIII (t7 < t < t8)................37 3.3.9模式IX (t8 < t < t9)................38 3.3.10模式X (t9 < t < t10)................39 3.3.11模式XI (t10 < t < t11)...............40 3.3.12模式XII (t11 < t < t12)...............41 3.3.13模式XIII (t12 < t < t13)..............42 3.3.14模式XIV (t13 < t < t14)..............43 3.4零電壓切換之條件..................44 第四章 電路設計與實驗結果分析 4.1電路規格......................45 4.2控制信號元件....................46 4.3諧振電容......................49 4.4加熱線圈......................50 4.5功率變壓器.....................51 4.6實驗結果......................52 第五章 結論與未來展望 5.1結論........................58 5.2未來展望......................58 參考文獻..........................60

    [1] 周坤成,高周波的基礎與應用,文笙書局,台北,民國八十四年。
    [2] 潘天明,現代感應加熱裝置,冶金工業出版社,北京,民國八十五年。
    [3] O. Lucia, P. Maussion, E. J. Dede, and J. M. Burdio, “Induction heating technology and its applications: past developments, current technology, and future challenges,” IEEE Trans. on Industrial Electronics, vol. 61, no. 5, pp. 2509-2520, May. 2014.
    [4] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics: converters, applications, and design, third edition, John Wiley & Sons, Inc., U. S. A., 2002.
    [5] J. Shao, R. L. Lin, F. C. Lee, and D. Y. Chen, “Characterization of EMI performance for hard and soft-switched inverters,” IEEE APEC, vol. 2, pp. 1009-1014, Feb. 2000.
    [6] M. P. Chen, J. K. Chen, K. Murata, M. Nakahara, and K. Harada, “Surge analysis of induction heating power supply with PLL,” IEEE Trans. on Power Electronics, vol. 16, no. 5, pp. 702-709, Sep. 2001.
    [7] J. Acero, J. M. Burdio, L. A. Barragan, D. Navarro, and S. Llorente, “EMI improvenents using the switching frequency modulation in a resonant inverter for domestic induction heating appliances,” IEEE PESC, vol. 4, pp. 3108-3112, June. 2004.
    [8] J. G. Cho, J. A. Sabate, G. Hua, and F. C. Lee, “Zero-voltage and zero-current-switching full bridge PWM converter for high-power applications,” IEEE Trans. on Power Electronics, vol. 11, no. 4, pp. 622-628, July. 1996.
    [9] E. S. Kim, K. Y. Joe, M. H. Kye, Y. H. Kim, and B. D. Yoon, “An improved soft-switching PWM FB DC-DC converter for reducing conduction losses,” IEEE Trans. on Power Electronics, vol. 14, no. 2, pp. 258-264, Mar. 1999.
    [10] T. Morimoto, S. Shirakawa, O. Koudriavtsev, and M. Nakaoka, “Zero-voltage and zero-current hybrid soft-switching phase-shifted PWM DC-DC power converter for high power applications,” IEEE APEC, vol. 1, pp. 104-110, Feb. 2000.
    [11] F. S. Hamdad and A. K. S. Bhat, “A novel pulsewidth control scheme for fixed-frequency zero-voltage-switching DC-DC PWM bridge converter,” IEEE Trans. on Industrial Electronics, vol. 48, no. 1, pp. 101-110, Feb. 2001.
    [12] X. B. Ruan and Y. G. Yan, “A novel zero-voltage and zero-current-switching PWM full-bridge converter using two diodes in series with the lagging leg,” IEEE Trans. on Industrial Electronics, vol. 48, no. 4, pp. 777-785, Aug. 2001.
    [13] K. W. Seok and B. H. Kwon, “An improved zero-voltage and zero-current-switching full-bridge PWM converter using a simple resonant circuit,” IEEE Trans. on Industrial Electronics, vol. 48, no. 6, pp. 1205-1209, Dec. 2001.
    [14] E. J. Dede, J.Jordan, J. V. Gonzalez, J. Linares, V. Esteve, and E. Maset, “Conception and design of a parallel resonant converter for induction heating,” IEEE APEC, pp. 38-44, Mar. 1991.
    [15] S. Dieckerhoff, M. J. Ruan, and R. W. De Donker, “Design of an IGBT-based LCL-resonant inverter for high-frequency induction heating,” IEEE IAS, vol. 3, pp. 2039-2045, Oct. 1999.
    [16] E. J. Dede, J. Jordan, V. Esteve, J. M. Espi, and S. Casans, “Behaviour of series and parallel resonant inverters for induction heating in short-circuit conditions,” IEEE IPEMC, vol. 2, pp. 645-649, Aug. 2000.
    [17] T. Mishima, C. Takami, and M. Nakaoka, “A new current phasor-controlled ZVS twin half-bridge high-frequency resonant inverter for induction heating,” IEEE Trans. on Industrial Electronics, vol. 61, no. 5, pp. 2531-2545, Dec. 2001.
    [18] S. Chudjuarjeen, A. Sangwang, and C. Koompai, “An improved LLC resonant inverter for induction-heating applications with asymmetrical control,” IEEE Trans. on Industry Applications, vol. 58, no. 7, pp. 2915-2925, July. 2011.
    [19] A. Cleary-Balderas and A. Medina-Rios, “Improving power quality in series resonant inverter for induction heating applications,” IEEE IEMDC, pp. 1137-1141, May. 2013.
    [20] 劉明峰,「全橋相移式柔性切換負載並聯共振電流型感應加熱器之設計與研製」,中原大學電機工程學系碩士論文,民國九十三年六月。
    [21] 陳建興,「全橋相移式高頻溫控感應加熱器之設計與研製」,中原大學電機工程學系碩士論文,民國九十四年六月。
    [22] P. Poulichet, F. Costa, and E. Laboure, “High-frequency modeling of a current transformer by finite-element simulation,” IEEE Trans. on Magnetics, vol. 39, no 2, pp. 998-1007, Mar. 2003.
    [23] V. Fireteanu and P. Roehr, “Finite element analysis of the tranverse flux induction heating of moving magnetic steel sheets,” IEEE ATEE, pp. 1-6, May. 2013.
    [24] J. Davies and P. Simpson, Induction heating handbook, The McGraw-Hill Companies, Inc., London, 1979.
    [25] S. Zinn and S. L. Semiatin, Elements of induction heating: design, control, and applications, Electric Power Research Institute, Inc., U.S.A., 1988.
    [26] D. Wetz, D. Landen, S. Satapathy, and D. Surls, “Inductive heating of materials for the study of high temperature mechanical properties,” IEEE Trans. on Dielectrics and Electrical Insulation, vol. 18, no. 4, pp. 1342-1351, Aug. 2011.
    [27] J. R. Garcia, J. M. Burdio, A. Martinez, and J. Sancho, “A method for calculating the workpiece power dissipation in induction heating processes,” IEEE APEC, vol. 1, pp. 302-307, Feb. 1994.
    [28] J. G. Lee, S. Y. Lim, K. H. Nam, and D. G. Choi, “An optimal selection of induction-heater capacitance considering dissipation loss caused by ESR,” IEEE Trans. on Industry Applications, vol. 43, no. 4, pp. 1117-1125, July. 2007.
    [29] 梁適安,高頻交換式電源供應器原理與設計,全華科技圖書股份有限公司,台北,民國八十四年。
    [30] UCC3895 datasheet, Texas Instrument, Inc., Dallas, Dec. 1999.
    [31] 梁從主,電力電子與電源轉換器設計講義,國立成功大學,台南,民國九十九年七月。
    [32] 林瑞禮,電力電子特論講義,國立成功大學,台南,民國一百年九月。

    下載圖示 校內:2019-08-27公開
    校外:2019-08-27公開
    QR CODE