簡易檢索 / 詳目顯示

研究生: 楊俊彥
Yang, Jun-Yan
論文名稱: 微電網內虛擬同步發電機之設計與實現
Design and Implementation of Virtual Synchronous Generator in Microgrid
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 80
中文關鍵詞: 分散式能源微電網虛擬同步發電機頻率穩定
外文關鍵詞: Distributed power generation, Microgrid, Virtual synchronous generator, Frequency stabilization
相關次數: 點閱:142下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著分散式能源的發展,多種應用電力電子元件組成的分散式發電系統已被廣泛利用。然而,隨著再生能源佔比日益提高與傳統機組除役,透過變流器併網的分散式電源無法提供慣量,導致電力系統的慣量逐漸減少,不利維持系統頻率穩定,使得再生能源不穩定的特性可能對系統造成危害。因此分散式能源頻率調節技術近來被廣為討論。
    為了維持系統頻率穩定,變流器輸出仿效傳統發電機特性的控制方式已被廣泛研究。傳統方法如下垂控制模仿發電機之間功率分配的特性,然而下垂控制並未能提供系統慣量,相對而言虛擬同步發電機控制結合外部下垂特性與內部轉子特性,表現傳統發電機穩態與暫態的特性,並藉由搖擺方程式提供慣量給系統,使系統能在暫態時減少頻率震盪。
    為驗證虛擬同步發電機控制之效益,本文利用市電併聯與孤島型微電網系統進行分析,同時比較定功率控制、下垂控制與虛擬同步發電機控制於各系統的表現,同時以PSIM與Matlab/Simulink套裝應用軟體模擬驗證控制法的可行性。實驗系統的建置上,本研究研製一部1 kW市電併聯型單相變流器分別併聯電網與併接一台汽油發電機進行實作驗證,由實測結果證實虛擬同步發電機控制不僅能在暫態時提供虛擬慣量緩和頻率波動,穩態時亦具備下垂特性調整輸出,相較於傳統方法能在微電網中更有效的主動支持系統。

    Recently, due to the development of distributed energy resources (DERs), several types of distributed power generations (DGs) which are composed of power electronic devices has been widely established. However, with the increasing penetration of renewable energy and retirement of traditional generators, the system inertia is gradually reduced, making the system unstable. The inverter-based DGs (IBDGs) without rotational units do not have inertia to support the system. Therefore, how to make IBDGs support system actively is widely discussed.
    In order to maintain system frequency stabilization, the inverter output imitates the characteristic of conventional synchronous generator (SG) has been extensively studied. Traditional method such as droop control imitates power sharing behavior among SGs to alleviate the frequency deviation. However, droop control cannot offer inertia to the system. The virtual synchronous generator control (VSG) integrates not only external droop mechanism but also internal rotor characteristic emulated SGs’ property in both steady state and transient. The swing equation is applied to support virtual inertia to the system, which can relieve the frequency oscillation in transient period.
    To demonstrate the effectiveness of the VSG control, this thesis analyzes the VSG control in both grid-tied system and isolated microgrid system. Moreover, the performance between constant power control, droop control, and VSG control are also compared for both system. Simulations are built by PSIM and Matlab/Simulink to verify the feasibility of VSG. A prototype 1 kW grid-tied single-phase inverter has been implemented and then connected with grid or a gasoline generator to test the control methods. The experimental data show that the VSG control not only offers virtual inertia to alleviate frequency fluctuation in transient but also adjusts output power by droop mechanism in steady state. VSG control can be more effective to support the system comparing with traditional methods.

    摘要 i ABSTRACT ii 致謝 iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES x Chapter 1. INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Literature Review 3 1.3 Research Objectives and Contributions 5 1.4 Organization of the Thesis 6 Chapter 2. GRID-TIED INVERTER AND CONTROL METHODS 8 2.1 Introduction 8 2.2 Sinusoidal Pulse Width Modulation 8 2.3 Phase-Locked Loop 10 2.4 Grid-Tied Inverter Control Methods 14 2.4.1 Constant Power Control 16 2.4.2 Droop Control 18 2.4.3 VSG Control 21 Chapter 3. SYSTEM IMPLEMENTATION 29 3.1 Introduction 29 3.2 Main Circuit 29 3.2.1 Specifications 29 3.2.2 LC filter design 31 3.3 Feedback Circuits 32 3.3.1 DC Voltage Feedback Circuit 33 3.3.2 AC Voltage Feedback Circuit 34 3.3.3 AC Current Feedback Circuit 35 3.4 Switch Driving Circuit 36 3.5 Control Scheme 37 Chapter 4. SIMULATION AND EXPERIMENTAL RESULTS 43 4.1 Introduction 43 4.2 Simulation Results 44 4.2.1 Connecting with Grid 45 4.2.2 Connecting with SG 49 4.3 Experimental Results 58 4.3.1 Connecting with Grid 59 4.3.2 Connecting with SG 64 4.4 Summary 71 Chapter 5. CONCLUSION AND FUTURE PROSPECTS 72 5.1 Conclusion 72 5.2 Future Prospects 73 REFERENCES 75

    [1] IEEE Standard for Interconnecting Distributed Resources With Electric Power Systems, IEEE Std. 1547-2003, Jul. 2003.
    [2] Characteristics of the Utility Interface for Photovoltaic (PV) Systems, IEC 61727, 2004.
    [3] M. P. N. van Wesenbeeck, S. W. H. de Haan, P. Varela, and K. Visscher, “Grid tied converter with virtual kinetic storage,” 2009 IEEE Bucharest PowerTech, Bucharest, pp. 1-7.
    [4] V. V. Thong, A. Woyte, M. Albu, M. V. Hest, J. Bozelie, J. Diaz, T. Loix, D. Stanculescu, and K. Visscher, “Virtual synchronous generator: Laboratory scale results and field demonstration,” 2009 IEEE Bucharest PowerTech, Bucharest, pp. 1-6.
    [5] T. V. Van, K. Visscher, J. Diaz, V. Karapanos, A. Woyte, M. Albu, J. Bozelie, T. Loix, and D. Federenciuc, “Virtual synchronous generator: An element of future grids,” 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Gothenburg, pp. 1-7.
    [6] Q. C. Zhong and G. Weiss, “Synchronverters: Inverters that mimic synchronous generators,” IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259-1267, Apr. 2011.
    [7] Q. C. Zhong, P. L. Nguyen, Z. Ma, and W. Sheng, “Self-synchronized synchronverters: Inverters without a dedicated synchronization unit,” IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 617-630, Feb. 2014.
    [8] C. H. Zhang, Q. C. Zhong, J. S. Meng, X. Chen, Q. Huang, S. H. Chen, and Z. P. Lv, “An improved synchronverter model and its dynamic behaviour comparison with synchronous generator,” 2013 IET Renewable Power Generation Conference (RPG 2013), Beijing, pp. 1-4.
    [9] K. Sakimoto, Y. Miura, and T. Ise, “Stabilization of a power system with a distributed generator by a virtual synchronous generator function,” International Conference on Power Electronics - ECCE Asia, Jeju, pp. 1498-1505, 2011.
    [10] T. Shintai, Y. Miura, and T. Ise, “Oscillation damping of a distributed generator using a virtual synchronous generator,” IEEE Transactions on Power Delivery, vol. 29, no. 2, pp. 668-676, Apr. 2014.
    [11] J. Alipoor, Y. Miura, and T. Ise, “Power system stabilization using virtual synchronous generator with alternating moment of inertia,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 2, pp. 451-458, Jun. 2015.
    [12] Y. Hirase, K. Abe, K. Sugimoto, and Y. Shindo, “A grid-connected inverter with virtual synchronous generator model of algebraic type,” Electrical Engineering in Japan, vol. 184, no. 4, pp. 10-21, Sep. 2013.
    [13] Y. Hirase, K. Abe, O. Noro, K. Sugimoto, and K. Sakimoto, “Stabilization effect of virtual synchronous generators in microgrids with highly penetrated renewable energies,” 17th IEEE Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, pp. 1-8, 2016.
    [14] Y. Hirase, O. Noro, K. Sugimoto, K. Sakimoto, Y. Shindo, and T. I. Osaka, “Effects and analysis of suppressing frequency fluctuations in microgrids using virtual synchronous generator control,” 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, pp. 43-49, 2015.
    [15] Y. Hirase, K. Sugimoto, K. Sakimoto, and T. Ise, “Analysis of resonance in microgrids and effects of system frequency stabilization using a virtual synchronous generator,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 4, pp. 1287-1298, Dec. 2016.
    [16] J. Liu, Y. Miura, and T. Ise, “Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators,” IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3600-3611, May 2016.
    [17] S. D'Arco and J. A. Suul, “Equivalence of virtual synchronous machines and frequency-droops for converter-based microgrids,” IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 394-395, Jan. 2014.
    [18] L. Xiong, F. Zhuo, F. Wang, X. Liu, Y. Chen, M. Zhu, and H. Yi, “Static synchronous generator model: A new perspective to investigate dynamic characteristics and stability issues of grid-tied PWM inverter,” IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6264-6280, Sep. 2016.
    [19] J. H. Meng, X. C. Shi, Y. Wang, and C. Fu, “A virtual synchronous generator control strategy for distributed generation,” China International Conference on Electricity Distribution (CICED), Shenzhen, pp. 495-498, 2014.
    [20] H. W. van der Broeck, H. C. Skudelny, and G. V. Stanke, “Analysis and realization of a pulsewidth modulator based on voltage space vectors,” IEEE Transactions on Industry Applications, vol. 24, no. 1, pp. 142-150, Feb. 1988.
    [21] M. Kumar and R. Gupta, “Sampling effect characterization of digital SPWM of VSI in time domain,” IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4150-4159, Jul. 2016.
    [22] J. Huang and R. Xiong, “Study on modulating carrier frequency twice in SPWM single-phase inverter,” IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3384-3392, Jul. 2014.
    [23] Y. Han, M. Luo, X. Zhao, J. M. Guerrero, and L. Xu, “Comparative performance evaluation of orthogonal-signal-generators-based single-phase PLL algorithms—A survey,” IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3932-3944, May 2016.
    [24] M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, “A new single-phase PLL structure based on second order generalized integrator,” 37th IEEE Power Electronics Specialists Conference, Jeju, pp. 1-6, 2006.
    [25] F. Gao, S. Bozhko, A. Costabeber, C. Patel, P. Wheele, C. I. Hill, and G. Asher, “Comparative stability analysis of droop control approaches in voltage-source-converter-based DC microgrids,” IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2395-2415, Mar. 2017.
    [26] Y. Deng, Y. Tao, G. Chen, G. Li, and X. He, “Enhanced power flow control for grid-connected droop-controlled inverters with improved stability,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5919-5929, Jul. 2017.
    [27] C. Dou, Z. Zhang, D. Yue, and M. Song, “Improved droop control based on virtual impedance and virtual power source in low-voltage microgrid,” IET Generation, Transmission & Distribution, vol. 11, no. 4, pp. 1046-1054, 2017.
    [28] Y. Sun, X. Hou, J. Yang, H. Han, M. Su, and J. M. Guerrero, “New perspectives on droop control in AC microgrid,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5741-5745, Jul. 2017.
    [29] Q. C. Zhong and G. Weiss, “Static synchronous generators for distributed generation and renewable energy,” 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, pp. 1-6.
    [30] N. Soni, S. Doolla, and M. C. Chandorkar, “Improvement of Transient Response in Microgrids Using Virtual Inertia,” IEEE Transactions on Power Delivery, vol. 28, no. 3, pp. 1830-1838, Jul. 2013.
    [31] IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Std. 519-2014 (Revision of IEEE Std. 519-1992), pp.1-29, Jun. 2014.
    [32] YAMAHA, EF2600FW Generator products information, online available: http://www.yamahagenerators.com/EF2600-p/ef2600.htm. [Accessed 12 Jul. 2017.]

    下載圖示 校內:2022-08-03公開
    校外:2022-08-03公開
    QR CODE