| 研究生: |
李彥霆 Lee, Yen-Ting |
|---|---|
| 論文名稱: |
主動式垂直磁浮型整合結構於非接觸式旋轉感應供電系統之研究 Study on Integrated Active Vertical Maglev Structure for Inductively Coupled Contactless Rotating Power Transfer System |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 非接觸式旋轉感應耦合結構 、永磁同步馬達結構 、主動式垂直磁浮結構 |
| 外文關鍵詞: | contactless rotary inductively coupled structure, PMSM structure, active vertical maglev structure |
| 相關次數: | 點閱:106 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨就生物醫療用旋轉機具中,旋轉部電能供給之需求,應用非接觸式電能傳輸技術,且為讓機具得以在隔離的空間中運作及降低運轉磨耗,研製兼具永磁同步馬達結構與主動式垂直磁浮結構之非接觸旋轉供電系統。論文中分別提出不同垂直磁浮直流線圈與電能傳輸交流線圈共構之結構,且透過磁場模擬軟體進行分析,選用平面式環形線圈配置感應耦合結構,並採用串–並聯諧振以提升電能傳輸能力。為驗證所提旋轉式感應耦合結構電能傳輸之可行性,研製永磁同步馬達結構,並以雙層永磁式磁浮層作為機具之水平穩定結構,其中為建置高精度之機具結構,採用三維列印技術設計並製作整合支架。經由實驗測試,本文所提系統確實能達成主動式垂直磁浮、非接觸旋轉供電及非接觸旋轉驅動運作,其整體系統最大輸出功率可達139 W,此時電能轉換效率為66.17%;而當輸出功率為109 W時,得到最高電能轉換效率為72.02%。
In this thesis, an improved type of the contactless rotating power transfer system with active vertical maglev structure for rotating applications in the medical field is proposed. The body shape of the rotating equipment is designed as a cavity in which to place the experimental unit, and the rotating equipment is constructed to work in an isolated place. The magnetic field finite-element-method simulation software is used to analyze the different co-constructions combined with the maglev DC coils and the inductive power transfer AC coils which are proposed in this thesis. According to the analysis, the planar toroidal magnetic coupling structure is chosen. To improve the power transfer efficiency, the S-P resonant topology is chosen. Moreover, in order to verify the feasibility of the power transmission in the process of rotation, a permanent magnet synchronous motor structure is integrated. The horizontally stable structure is integrated by two permanent maglev layers in this thesis. Based on the experimental results, the maximum output power received in load of the rotary machinery is 139 W with conversion efficiency of 66.17%. In addition, the maximum conversion efficiency has reached about 72.02% with 109 W output power.
[1]S. Neethu and B. G. Fernandes, “Design, analysis and optimization of high speed axial flux permanent magnet synchronous motor for centrifuge application,” in Proc. IEEE IEMDC, 2017, pp. 1-6.
[2]K. Herzog, E. Schulte, M. A. Atmanand, and W. Schwarz, “Slip control system for a deep-sea mining machine,” IEEE Trans. Autom. Sci. Eng., vol. 4, no. 2, pp. 282-286, Apr. 2007.
[3]H. Bangcheng, Z. Shiqiang, W. Xi, and Y. Qian, “Integral design and analysis of passive magnetic bearing and active radial magnetic bearing for agile satellite application,” IEEE Trans. Magn., vol. 48, no. 6, pp. 1959-1966, June 2012.
[4]F. Xinghe, W. Jianhao, and L. Mingyao, “Design and analysis of linear rotary permanent magnet generator for wind-wave combined power generation system,” in Proc. ICEMS, 2017, pp. 1-6.
[5]Y. C. Wang, Y. F. Chen, and Y. C. Tseng, “Using rotatable and directional (R&D) sensors to achieve temporal coverage of objects and its surveillance application,” IEEE Trans. Mobile Comput., vol. 11, no. 8, pp. 1358-1371, Aug. 2012.
[6]沈紘宇,非接觸式電能傳輸之新型感應耦合結構設計,國立成功大學電機工程學系博士論文,2014年。
[7]陳信銘,旋轉式感應耦合結構於可旋型非接觸式電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2014年。
[8]黃立宇,具新型旋轉式感應耦合結構之非接觸式磁浮旋轉供電系統研製,國立成功大學電機工程學系碩士論文,2015年。
[9]陳重羽,具垂直磁浮型旋轉式感應耦合結構之非接觸式旋轉供電系統,國立成功大學電機工程學系碩士論文,2016年。
[10]孫于閔,具主動式垂直磁浮型感應耦合結構之非接觸式旋轉供電系統,國立成功大學電機工程學系碩士論文,2017年。
[11]J. Y. Lee, L. Y. Huang, and C. Y. Chen, “Design and implementation of contactless maglev rotating power transfer system with new rotary inductive coupled structure,” in Proc. IEEE IPEMC-ECCE Asia, 2016, pp. 2442-2449.
[12]J. Dai, S. Hagen, D. C. Ludois, and I. P. Brown, “Synchronous generator brushless field excitation and voltage regulation via capacitive coupling through journal bearings,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3317-3326, July 2017.
[13]J. Dai, S. Hagen, D. C. Ludois, and I. P. Brown, “Synchronous generator field excitation via capacitive coupling through a journal bearing,” in Proc. IEEE ECCE, 2016, pp. 1-8.
[14]G. Schweitzer and E. H. Maslen, Magnetic Bearings: Theory, Design, and Application to Rotating Machinery, 2009: Springer-Verlag.
[15]S. Earnshaw, “On the nature of the molecular forces which regulate the constitution of the luminiferous ether,” Trans. Cambridge Philosophical Society, vol. 7, pp. 97-112, 1842.
[16]D. L. Trumper, S. M. Olson, and P. K. Subrahmanyan, “Linearizing control of magnetic suspension systems,” IEEE Trans. Control Syst. Technol., vol. 5, no. 4, pp. 427-438, July 1997.
[17]W. G. Hurley and W. H. Wolfle, “Electromagnetic design of a magnetic suspension system,” IEEE Trans. Educ., vol. 40, no. 2, pp. 124-130, May 1997.
[18]J. L. Lin and B. C. Tho, “Analysis and μ-based controller design for an electromagnetic suspension system,” IEEE Trans. Educ., vol. 41, no. 2, pp. 116-129, May 1998.
[19]W. G. Hurley, M. Hynes, and W. H. Wolfle, “PWM control of a magnetic suspension system,” IEEE Trans. Educ., vol. 47, no. 2, pp. 165-173, May 2004.
[20]M. S. De Queiroz, D. M. Dawson, and H. Canbolat, “A backstepping-type controller for a 6-DOF active magnetic bearing system,” in Proc. IEEE Decision and Control, 1996, pp. 3370-3375.
[21]N. Motee, M. S. de Queiroz, Y. Fang, and D. M. Dawson, “Active magnetic bearing control with zero steady-state power loss,” in Proc. ACC, 2002, pp. 827-832.
[22]F. D. González, F. D. Bianchi, A. Sumper, and O. G. Bellmunt, “Control of a flywheel energy storage system for power smoothing in wind power plants,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 204-214, Mar. 2014.
[23]X. Zhang and J. Yang, “A DC-link voltage fast control strategy for high-speed PMSM/G in flywheel energy storage system,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1671-1679, Mar. 2018.
[24]J. P. C. Smeets, L. Encica, and E. A. Lomonova, “Comparison of winding topologies in a pot core rotating transformer,” in Proc. OPTIM, 2010, pp. 103-110.
[25]J. P. C. Smeets, D. C. J. Krop, J. W. Jansen, M. A. M. Hendrix, and E. A. Lomonova, “Optimal design of a pot core rotating transformer,” in Proc. IEEE ECCE, 2010, pp. 4390-4397.
[26]A. Abdolkhani and A. P. Hu, “Improved coupling design of contactless slipring for rotary applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 288-295, Mar. 2015.
[27]A. Abdolkhani, A. P. Hu, and N. K. C. Nair, “A double stator through-hole type contactless slipring for rotary wireless power transfer applications,” IEEE Trans. Energy Convers., vol. 29, no. 2, pp. 426-434, June 2014.
[28]A. Abdolkhani, A. P. Hu, G. A. Covic, and M. Moridnejad, “Through-hole contactless slipring system based on rotating magnetic field for rotary applications,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3644-3655, Nov. 2014.
[29]A. Abdolkhani and A. P. Hu, “A contactless slipring system based on axially traveling magnetic field,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 280-287, Mar. 2015.
[30]A. Abdolkhani, A. P. Hu, G. A. Covic, and M. Moridnejad, “Contactless slipring system based on rotating magnetic field principle for rotary applications,” in Proc. IEEE ECCE, 2013, pp. 2566-2573.
[31]A. Abdolkhani and A. P. Hu, “A contactless slipring system by means of axially travelling magnetic field,” in Proc. IEEE ECCE, 2012, pp. 1796-1803.
[32]R. Trevisan and A. Costanzo, “A 1-kw contactless energy transfer system based on a rotary transformer for sealing rollers,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6337-6345, Nov. 2014.
[33]J. Hirai, T. W. Kim, and A. Kawamura, “Integral motor with driver and wireless transmission of power and information for autonomous subspindle drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 13-20, Jan. 2000.
[34]J. Hirai, T. W. Kim, and A. Kawamura, “Wireless transmission of power and information and information for cableless linear motor drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 21-27, Jan. 2000.
[35]M. Carpita, M. D. Vivo, S. Gavin, and D. Bommottet, “A rotating contactless power transfer system for space applications,” in Proc. SPEEDAM, 2014, pp. 238-242.
[36]S. Ditze, A. Endruschat, T. Schriefer, A. Rosskopf, and T. Heckel, “Inductive power transfer system with a rotary transformer for contactless energy transfer on rotating applications,” in Proc. IEEE ISCAS, 2016, pp. 1622-1625.
[37]X. Zhu, B. Lin, L. Liu, and Y. Luan, “Power transfer performance and cutting force effects of contactless energy transfer system for rotary ultrasonic grinding,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2785-2795, May 2016.
[38]M. Sugino and T. Masamura, “The wireless power transfer systems using the class E push-pull inverter for industrial robots,” in Proc. IEEE WPTC, 2017, pp. 1-3.
[39]S. Kikuchi, T. Sakata, E. Takahashi, and H. Kanno, “Development of wireless power transfer system for robot arm with rotary and linear movement,” in Proc. IEEE AIM, 2016, pp. 1616-1621.
[40]M. Ruviaro, F. Runcos, N. Sadowski, and I. M. Borges, “Analysis and test results of a brushless doubly fed induction machine with rotary transformer,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2670-2677, June 2012.
[41]M. Ruviaro and F. Rüncos, “A brushless doubly fed induction machine with flat plane rotary transformers,” in Proc. ICEM, 2012, pp. 23-29.
[42]H. Zhong, C. Wu, and Y. Wang, “Design study on novel three-phase rotary transformer used for brushless doubly fed induction generators,” in Proc. ICEMS, 2017, pp. 1-4.
[43]N. L. Zietsman and N. Gule, “Optimal design methodology of a three phase rotary transformer for doubly fed induction generator application,” in Proc. IEEE IEMDC, 2015, pp. 763-768.
[44]X. Chen and X. Wang, “Proximate standing wave feature of magnetic field and its influence on the performance of wound rotor brushless doubly-fed machine,” IEEE Trans. Energy Convers., vol. 32, no. 1, pp. 296-308, Mar. 2017.
[45]X. Chen, Z. Wei, X. Gao, C. Ye, and X. Wang, “Research of voltage amplitude fluctuation and compensation for wound rotor brushless doubly-fed machine,” IEEE Trans. Energy Convers., vol. 30, no. 3, pp. 908-917, Sep. 2015.
[46]O. Laldin, S. D. Sudhoff, and S. Pekarek, “An analytical design model for wound rotor synchronous machines,” IEEE Trans. Energy Convers., vol. 30, no. 4, pp. 1299-1309, Dec. 2015.
[47]“Proxi-ring,” PowerbyProxi Ltd, New Zealand. [Online]. Available: http://powerbyproxi.com/innovations/industrial/proxi-ring/, 2016.
[48]Linear Hall Effect Sensor (A1324) Data Sheet, Allegro MicroSystems, Inc., 2011.
[49]C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[50]X. Liu, W. M. Ng, C. K. Lee, and S. Y. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits,” in Proc. IEEE APEC, 2008, pp. 645-650.
[51]“用戶手冊,” Beijing Tiertime Technology Co., Ltd, China. [Online]. Available:https://cn.tiertime.com/downloads/docs/UP_BOX_Plus_4.8.1_CN.pdf, 2014.
[52]UCC3895 Data Sheet, Texas Instruments Inc., 2013.
[53]IR2110 Data Sheet, International Rectifier Inc., 2005.
[54]IRF840 Data Sheet, Philips Semiconductors Inc., 1999.
[55]GBU806 Data Sheet, Diodes Inc., 2003.
[56]Hall-Effect Switch (3144) Data Sheet, Allegro MicroSystems Inc., 2002.
[57]TC4093BP Data Sheet, Toshiba Inc., 2007.
[58]dsPIC30F4011 Data Sheet, Microchip Technology Inc., 2005.