簡易檢索 / 詳目顯示

研究生: 蔡菀倫
Tsai, Wan-Lun
論文名稱: 基於虛擬實境互動技術之籃球戰術訓練系統
Basketball Tactical Training Based on Virtual Reality and Interaction Technology
指導教授: 朱威達
Chu, Wei-Ta
胡敏君
Hu, Min-Chun
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 97
中文關鍵詞: 虛擬實境籃球戰術訓練軌跡視覺化決策判斷觸覺回饋
外文關鍵詞: Virtual Reality, Basketball Tactic Training, Trajectory Visualization, Decision-making, Haptic Feedback
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著科技及運算能力的進步,虛擬實境技術中的沉浸度及互動性獲得顯著的提升。受益於高沉浸感的體驗,許多不同領域的教育訓練也都導入虛擬實境技術,如醫學手術、工程製造、天文學、運動等。其中,越來越多運動員及運動專家透過沉浸式虛擬實境技術在多樣化的虛擬情境中進行訓練。透過建立可調控、可重複之訓練情境,虛擬實境技術不僅能提供運動員穩定的訓練環境,同時也讓運動科學家能夠針對更多個人能力進行分析。本研究提出一基於沉浸式虛擬實境與互動技術之籃球戰術訓練系統,該系統包含戰術輸入裝置、多感官回饋之虛擬實境互動系統及運算伺服器。為了深入瞭解該系統對於訓練效益的影響,本文分別針對系統提供之 (1) 進攻跑位訓練、(2) 進攻決策判斷訓練及 (3) 觸覺互動回饋等因素進行使用者研究分析。

    在過去的團隊籃球戰術學習中,容易遇到因為訓練人數不足或是訓練人員對於目標戰術不熟悉的問題,沒辦法進行有效的訓練。為了要提升戰術訓練的效益,我們探討使用虛擬實境來提供沉浸式的訓練方法是否能提升球員對於戰術跑位的理解與想像。在本論文的第一部分,我們提出一套基於 AI模型自動生成防守者軌跡之戰術模擬虛擬實境訓練系統,並使用遲疑時間、受測者跑動軌跡、主觀性感受及運動想像能力自評等指標來比較不同沉進度訓練方法所能帶來的效益,加以驗證我們所建構的方法能夠提供一個更有效的訓練方式。本篇論文的第二部分著重於籃球戰術執行中如何根據防守者做出對應的進攻決策。我們提出一套基於虛擬實境與動作辨識的進攻決策訓練系統,讓使用者進行動作與決策的自我訓練。除了驗證該系統的訓練效益,我們也進一步了解不同形式的虛擬內容 (360 影片及電腦模擬場景) 對於訓練效益及臨場感的影響。本篇論文的第三部分探討觸覺回饋在所提出之籃球戰術虛擬訓練環境中的影響。我們提出一震動回饋手套來提升使用者在虛擬實境中傳接球時的感受,除了以主觀問卷探討觸覺回饋是否可提升戰術訓練的沈浸感,也以傳球反應時間及腦波是否呈現事件相關電位 (Event -Related Potential, ERP) 來客觀評估體驗沉浸感。

    In recent years, with the improvement of computer technology and processing power, immersion and interaction have been highly improved in virtual reality (VR) applications. VR, which could provide a realistic experience, has been used in various domains of training, such as surgery, engineering, astronomy, and sport. In the domain of sports training, immersive VR has been widely used to provide a wide variety of training scenarios for athletes and other sports professionals. The ability to create controlled, repeatable training scenarios enables VR to provide a stable training environment. Furthermore, sports scientists could conduct a more comprehensive exploration of the personal abilities of athletes in a VR training environment. In this dissertation, we proposed an immersive VR-based basketball tactical training system, which includes a tactic input device, an immersive VR interaction system with multi-sensory feedback, and a computing server. To in-depth understand the effectiveness of the proposed system, we conducted studies on the training of the tactical movement, offensive decision-making, and the introduction of haptic feedback in basketball training. In a conventional basketball tactical training scenario, if there are not enough players during training or some players are unfamiliar with the tactic(s), it is very difficult for team members to practice and execute tactic(s) correctly. To improve the training effectiveness, the first part of this dissertation proposes a basketball tactical training system based on virtual reality. To provide a realistic training scenario, our system can automatically generate trajectories of defenders by AI models trained based on trajectory data in NBA games. We investigate the feasibility of using immersive training to improve player's understanding of tactics and sports imagery.

    We use the hesitation time, the running trajectory, subjective measurements, and sports imagery ability questionnaire to evaluate the training effectiveness of methods with different degrees of immersion. In the second part of this dissertation, we focus on the player's offensive decision-making ability during a tactical execution. We propose an action-aware basketball offensive decision-making training system, which enables interactive self-training for players. In addition to the evaluation of the training effectiveness, we explore the effect of using different kinds of virtual content (360-degree video and computer generated content) in the training. In the third part of this dissertation, we propose vibrotactile gloves to provide a high immersion ball interaction and improve the user's presence during the virtual training process. In addition to using subjective questionnaires to evaluate the user's presence, an EEG-based metric (i.e., Event-Related Potential, ERP) is used to objectively evaluate the user’s visual-haptic immersion in the catching. Furthermore, the reaction time in the passing during the tactical training is measured to investigate the effect of haptic feedback in the proposed VR training system.

    Abstract (Chinese) i Abstract (English) iii Acknowledgments v Table of Contents vi List of Tables ix List of Figures x Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Preliminary Study 2 1.2.1 Design and Procedure 2 1.2.2 Result and Discussion 3 1.3 Proposed Framework of VR-based Basketball Tactic Training 5 1.4 Contribution 6 1.4.1 VR-based Basketball Tactic Training 6 1.4.2 Action-aware Basketball Decision-making Training System 6 1.4.3 VR-based Basketball Training with Haptic Feedback 7 1.5 Organization 8 Chapter 2. Literature Reviews 9 2.1 Using Multimedia in Sport Training 9 2.2 Using Virtual Reality in Sport Training 10 2.2.1 VR-based Sport Training for Motor Ability 11 2.2.2 VR-based Sports Training for Mental Ability 12 2.2.3 Computer-generated Content vs. 360o Video 13 2.3 Haptic Feedback in Sport Training 14 Chapter 3. Virtual Reality Based Basketball Tactic Training 17 3.1 Introduction 17 3.2 Virtual Reality Based Basketball Tactic Training Framework 18 3.2.1 Tactical Input Device 19 3.2.2 Computing and Rendering Server 22 3.2.3 Virtual Reality Interaction System 25 3.2.4 Usage Scenario 28 3.3 Experimental Design 30 3.3.1 Apparatus and Materials 30 3.3.2 Participants 30 3.3.3 Measures 31 3.3.4 Procedure 33 3.4 Experimental Results 36 3.4.1 Hesitation Time 36 3.4.2 Running Trajectory 37 3.4.3 User Experience Metrics 42 3.4.4 Imagery Ability 42 3.4.5 Discussion 43 3.5 Summary 47 Chapter 4. Virtual Reality Based Basketball Offensive Decision-making Training 49 4.1 Introduction 49 4.2 Proposed system 51 4.2.1 Virtual defensive training scenario 52 4.2.2 Basketball offensive action recognition 53 4.3 Experimental Design 54 4.3.1 Participants 55 4.3.2 Apparatus and materials 55 4.3.3 Procedure 57 4.3.4 Measures 58 4.4 Experimental Results 59 4.4.1 Knowledge and decision time evaluation 59 4.4.2 Subjective evaluation 60 4.4.3 Discussion 64 4.5 Summary 66 Chapter 5. Haptic Feedback in Virtual Basketball Training 68 5.1 Introduction 68 5.2 VR Basketball Training System with Vibrotactile Feedback 69 5.2.1 Virtual Basketball Training System 69 5.2.2 Vibrotactile Gloves 70 5.2.3 Apparatus 72 5.2.4 Experimental Design 72 5.2.5 EEG Analysis 75 5.3 Experimental Results 76 5.3.1 Section 1. EEG-based metric for Visuo-haptic Immersion 76 5.3.2 Section 2. Reaction Time and Subjective Evaluations in the Passing of Tactical Training 77 5.3.3 Discussions 79 5.4 Summary 80 Chapter 6. Conclusion and Future Work 82 6.1 Conclusion 82 6.2 Future work 83 References 85

    [1] A. Akbaş, W. Marszałek, A. Kamieniarz, J. Polechoński, K. J. Słomka, and G. Juras. Application of virtual reality in competitive athletes–a review. Journal of human kinetics, 69:5, 2019. doi: 10.2478/hukin-2019-0023.
    [2] S. Allin, Y. Matsuoka, and R. Klatzky. Measuring just noticeable differences for haptic force feedback: implications for rehabilitation. In Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002, pages 299–302. IEEE, 2002. doi: 10.1109/HAPTIC.2002.998972.
    [3] L. G. Appelbaum and G. Erickson. Sports vision training: A review of the state-of-the-art in digital training techniques. International Review of Sport and Exercise Psychology, 11(1):160–189, 2018. doi: 10.1080/1750984X.2016.1266376.
    [4] J. L. Arias-Estero, F. M. Argudo, and J. I. Alonso. One-on-one situation decision-making according to equipment in youth basketball. Int. Journal of Sports Science & Coaching, 13(1):72–77, Feb. 2018. doi: 10.1177/1747954117746494.
    [5] S. Arndt, A. Perkis, and J.-N. Voigt-Antons. Using virtual reality and head-mounted displays to increase performance in rowing workouts. In Proceedings of the 1st International Workshop on Multimedia Content Analysis in Sports, pages 45–50, 2018. doi: 10.1145/3265845.3265848.
    [6] U. . U. M. Avatar. Uma steering group, 2009. accessed on 20 April 2021.
    [7] D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series. In KDD Workshop, volume 10, pages 359–370. Seattle, WA, 1994.
    [8] B. Bideau, R. Kulpa, N. Vignais, S. Brault, F. Multon, and C. Craig. Using virtual reality to analyze sports performance. IEEE Computer Graphics and Applications, 30(2):14–21, Mar./Apr. 2010. doi: 10.1109/MCG.2009.134.
    [9] B. Bideau, F. Multon, R. Kulpa, L. Fradet, and B. Arnaldi. Virtual reality applied to sports: do handball goalkeepers react realistically to simulated synthetic opponents? In Proceedings of the 2004 ACM SIGGRAPH International Conference on Virtual Reality Continuum and its Applications in Industry, pages 210–216. ACM, 2004. doi: 10.1145/1044588.1044632.
    [10] J. M. Bird. The use of virtual reality head-mounted displays within applied sport psychology. Journal of Sport Psychology in Action, 11(2):115–128, 2020. doi: 10.1080/21520704.2018.1563573.
    [11] S. Brault, R. Kulpa, L. Duliscouët, A. Marin, and B. Bideau. Virtual kicker vs. real goalkeeper in soccer: a way to explore goalkeeper's performance. Movement Sport Sciences, (3):79–88, 2015. doi: 10.1051/sm/2015026.
    [12] G. Brunnett, S. Rusdorf, and M. Lorenz. V-pong: an immersive table tennis simulation. IEEE Computer Graphics and Applications, 26(4):10–13, 2006. doi: 10.1109/MCG.2006.92.
    [13] G. C. Burdea. Haptic feedback for virtual reality. In Virtual reality and prototyping workshop, volume 2, pages 17–29. Citeseer, 1999.
    [14] H.-H. Chang, W.-C. Chen, W.-L. Tsai, M.-C. Hu, and W.-T. Chu. An autoregressive generation model for producing instant basketball defensive trajectory. In Proceedings of the 2nd ACM International Conference on Multimedia in Asia, MMAsia ’20, New York, NY, USA, 2021. Association for Computing Machinery.
    [15] I. Choi, H. Culbertson, M. R. Miller, A. Olwal, and S. Follmer. Grabity: A wearable haptic interface for simulating weight and grasping in virtual reality. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pages 119–130. ACM, 2017. doi:10.1145/3126594.3126599.
    [16] S. Choi, K. Jung, and S. D. Noh. Virtual reality applications in manufacturing industries: Past research, present findings, and future directions. Concurrent Engineering, 23(1):40–63, 2015. doi: 10.1177/1063293X14568814.
    [17] A. Clark. Whatever next? predictive brains, situated agents, and the future of cognitive science. Behavioral and brain sciences, 36(3):181–204, 2013. doi: 10.1017/S0140525X12000477.
    [18] A. Covaci, A.-H. Olivier, and F. Multon. Visual perspective and feedback guidance for vr free-throw training. IEEE Computer Graphics and Applications, 35(5):55–65, 2015. doi: 10.1109/MCG.2015.95.
    [19] A. Covaci, C.-C. Postelnicu, A. N. Panfir, and D. Talaba. A virtual reality simulator for basketball free-throw skills development. In Technological Innovation for Value Creation, pages 105–112. Springer, Feb. 2012. doi:10.1007/978-3-642-28255-3_12.
    [20] C. Craig. Understanding perception and action in sport: how can virtual reality technology help? Sports Technology, 6(4):161–169, Oct. 2013. doi: 10.1080/19346182.2013.855224.
    [21] C. M. Craig, J. Bastin, and G. Montagne. How information guides movement: Intercepting curved free kicks in soccer. Human movement science, 30(5):931–941, 2011. doi: 10.1016/j.humov.2010.08.007.
    [22] W. Dai, Y. Sun, and X. Qian. Functional analysis of grasping motion. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3507–3513. IEEE, 2013. doi: 10.1109/IROS.2013.6696856.
    [23] F. D. Davis. User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. Int. journal of man-machine studies, 38(3):475–487, Mar. 1993. doi: 10.1006/imms.1993.1022.
    [24] U. Demšar, K. Buchin, F. Cagnacci, K. Safi, B. Speckmann, N. Van de Weghe, D. Weiskopf, and R. Weibel. Analysis and visualisation of movement: an interdisciplinary review. Movement Ecology, 3(1):5, 2015. doi:10.1186/s40462-015-0032-y.
    [25] P. Düking, H.-C. Holmberg, and B. Sperlich. The potential usefulness of virtual reality systems for athletes: a short swot analysis. Frontiers in Physiology, 9:128, Mar. 2018. doi: 10.3389/fphys.2018.00128.
    [26] P. J. Fadde. Interactive video training of perceptual decision-making in the sport of baseball. Technology, Instruction, Cognition and Learning, 4(3):265–285, 2006.
    [27] D. Farrow and B. Abernethy. Do expertise and the degree of perception—action coupling affect natural anticipatory performance? Perception, 32(9):1127–1139, 2003. doi: 10.1068/p3323.
    [28] C. Faure, A. Limballe, B. Bideau, and R. Kulpa. Virtual reality to assess and train team ball sports performance: A scoping review. Journal of sports Sciences, 38(2):192–205, 2020. doi: 10.1080/02640414.2019.1689807.
    [29] A. Franks, A. Miller, L. Bornn, K. Goldsberry, et al. Characterizing the spatial structure of defensive skill in professional basketball. Annals of Applied Statistics, 9(1):94–121, 2015. doi: 10.1214/14-AOAS799.
    [30] A. Gaggioli, L. Morganti, M. Mondoni, and A. Antonietti. Benefits of combined mental and physical training in learning a complex motor skill in basketball. Psycholoty, 4(9):1–6, Sep. 2013. doi: 10.4236/psych.2013.49A2001.
    [31] L. Gehrke, S. Akman, P. Lopes, A. Chen, A. K. Singh, H.-T. Chen, C.-T. Lin, and K. Gramann. Detecting visuo-haptic mismatches in virtual reality using the prediction error negativity of event-related brain potentials. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, page 427. ACM, 2019. doi: 10.1145/3290605.3300657.
    [32] R. Gray. Transfer of training from virtual to real baseball batting. Frontiers in psychology, 8:2183, 2017. doi: 10.3389/fpsyg.2017.02183.
    [33] U. Gulec, M. Yilmaz, V. Isler, R. V. O'Connor, and P. M. Clarke. A 3d virtual environment for training soccer referees. Computer Standards & Interfaces, 64:1–10, 2019. doi: 10.1016/j.csi.2018.11.004.
    [34] S. M. Hadlow, D. Panchuk, D. L. Mann, M. R. Portus, and B. Abernethy. Modified perceptual training in sport: a new classification framework. Journal of Science and Medicine in Sport, 21(9):950–958, 2018. doi: 10.1016/j.jsams.2018.01.011.
    [35] T. Hohmann, H. Obelöer, N. Schlapkohl, and M. Raab. Does training with 3d videos improve decision-making in team invasion sports? Journal of sports sciences, 34(8):746–755, Jul. 2016. doi: 10.1080/02640414.2015.1069380.
    [36] M. J. Hopwood, D. L. Mann, D. Farrow, and T. Nielsen. Does visual-perceptual training augment the fielding performance of skilled cricketers? International Journal of Sports Science & Coaching, 6(4):523–535, 2011. oi: 10.1260/1747-9541.6.4.523.
    [37] Y. Huang, L. Churches, and B. Reilly. A case study on virtual reality American football training. In Proceedings of the 2015 Virtual Reality International Conference, page 6. ACM, 2015. doi: 10.1145/2806173.2806178.
    [38] P. Huber, W. Christmas, A. Hilton, J. Kittler, and M. Rätsch. Real-time 3d face super-resolution from monocular in-the-wild videos. In ACM SIGGRAPH 2016 Posters, SIGGRAPH ’16, pages 67:1–67:2, New York, NY, USA, 2016. ACM. doi: 10.1145/2945078.2945145.
    [39] M. Isogawa, D. Mikami, T. Fukuda, N. Saijo, K. Takahashi, H. Kimata, and M. Kashino. What can vr systems tell sports players? reaction-based analysis of baseball batters in virtual and real worlds. In Proc. 2018 IEEE Conf. Virtual Reality and 3D User Interfaces, pages 587–588, 18-22, Mar. 2018. doi: 10.1109/VR.2018.8446073.
    [40] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The international journal of aviation psychology, 3(3):203–220, 1993. doi: 10.1207/s15327108ijap0303_3.
    [41] M. Khamis, N. Schuster, C. George, and M. Pfeiffer. Electrocutscenes: Realistic haptic feedback in cutscenes of virtual reality games using electricmuscle stimulation. In 25th ACM Symposium on Virtual Reality Software and Technology, VRST ’19, 2019. doi: 10.1145/3359996.3364250.
    [42] M. Kim, C. Jeon, and J. Kim. A study on immersion and presence of a portable hand haptic system for immersive virtual reality. Sensors, 17(5):1141, 2017. doi: 10.3390/s17051141.
    [43] T. Kimura, D. Nasu, and M. Kashino. Utilizing virtual reality to understand athletic performance and underlying sensorimotor processing. 2(6):299, 2018. doi: 10.3390/proceedings2060299.
    [44] A. Kittel, P. Larkin, N. Elsworthy, and M. Spittle. Using 360° virtual reality as a decision-making assessment tool in sport. Journal of science and medicine in sport, 22(9):1049–1053, 2019. doi: 10.1016/j.jsams.2019.03.012.
    [45] A. Kittel, P. Larkin, N. Elsworthy, and M. Spittle. Video-based testing in sporting officials: A systematic review. Psychology of Sport and Exercise, 43:261–270, 2019. doi: 10.1016/j.psychsport.2019.03.013.
    [46] F. Kosmalla, F. Wiehr, F. Daiber, A. Krüger, and M. Löchtefeld. Climbaware: Investigating perception and acceptance of wearables in rock climbing. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pages 1097–1108, 2016. doi: 10.1145/2858036.2858562.
    [47] S. Labs. Strivr | immersive training solutions. (n.d.)., 2016. accessed on 29
    January 2020.
    [48] P. Larkin, C. Mesagno, J. Berry, M. Spittle, and J. Harvey. Video-based training to improve perceptual-cognitive decision-making performance of australian football umpires. Journal of sports sciences, 36(3):239–246, Mar. 2018. doi: 10.1080/02640414.2017.1298827.
    [49] P. Larkin, C. Mesagno, M. Spittle, J. Berry, et al. An evaluation of video-based training programs for perceptual-cognitive skill development. a systematic review of current sport-based knowledge. International Journal of Sport Psychology, 46(6):555–586, Nov./Dec. 2015. doi: 10.7352/IJSP.2015.46.555.
    [50] T. Lin, S. Morishima, A. Maejima, and N. Tang. The effects of virtual characters on audiences'movie experience. Interacting with Computers, 22(3):218–229, 2009.
    [51] H. Liu, Z. Wang, C. Mousas, and D. Kao. Virtual reality racket sports: Virtual drills for exercise and training. In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pages 566–576. IEEE, 2020. doi: 10.1109/ISMAR50242.2020.00084.
    [52] M. Lorains, K. Ball, and C. MacMahon. An above real time training intervention for sport decision making. Psychology of Sport and Exercise, 14(5):670–674, Sep. 2013. doi: 10.1016/j.psychsport.2013.05.005.
    [53] G. Ltd. Virb 360, 2018. accessed on 29 January 2020.
    [54] N. Ltd. Perceptron neuron, 2018. accessed on 29 January 2020.
    [55] A. T. Maereg, A. Nagar, D. Reid, and E. L. Secco. Wearable vibrotactile haptic device for stiffness discrimination during virtual interactions. Frontiers in Robotics and AI, 4:42, 2017. doi: 10.3389/frobt.2017.00042.
    [56] I. Mahalil, A. M. Yusof, and N. Ibrahim. A literature review on the effects of 6-dimensional virtual reality’s sport applications toward higher presense. In 2020 8th International Conference on Information Technology and Multimedia (ICIMU), pages 277–282, 2020. doi: 10.1109/ICIMU49871.2020.9243570.
    [57] S. Makeig, A. J. Bell, T.-P. Jung, and T. J. Sejnowski. Independent component analysis of electroencephalographic data. In Advances in neural information processing systems, pages 145–151, 1996.
    [58] R. P. McMahan, D. A. Bowman, D. J. Zielinski, and R. B. Brady. Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Trans. Visualization & Computer Graphics, pages 626–633, Apr. 2012. doi: 10.1109/TVCG.2012.43.
    [59] H. C. Miles, S. R. Pop, S. J. Watt, G. P. Lawrence, and N. W. John. A review of virtual environments for training in ball sports. Computers & Graphics, 36(6):714–726, 2012. doi: 10.1016/j.cag.2012.04.007.
    [60] M. Mudric, I. Cuk, A. Nedeljkovic, S. Jovanovic, and S. Jaric. Evaluation of video-based method for the measurement of reaction time in specific sport situation. International Journal of Performance Analysis in Sport, 15(3):1077–1089, 2015. doi: 10.1080/24748668.2015.11868852.
    [61] K. J. Munroe-Chandler, C. R. Hall, G. J. Fishburne, and V. Shannon. Using cognitive general imagery to improve soccer strategies. European Journal of Sport Science, 5(1):41–49, 2005. doi: 10.1080/17461390500076592.
    [62] D. L. Neumann, R. L. Moffitt, P. R. Thomas, K. Loveday, D. P. Watling, C. L. Lombard, S. Antonova, and M. A. Tremeer. A systematic review of the application of interactive virtual reality to sport. Virtual Reality, 22(3):183–198, Sep. 2018. doi: 10.1007/s10055-017-0320-5.
    [63] NeuroTracker. Neurotracker, 2018. accessed on 29 January 2020.
    [64] F. Nicol. Functional principal component analysis of aircraft trajectories. International Conference on Interdisciplinary Science for Innovative Air Traffic Management (ISIATM), 2013.
    [65] C. Pacchierotti, S. Sinclair, M. Solazzi, A. Frisoli, V. Hayward, and D. Prattichizzo. Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives. IEEE transactions on haptics, 10(4):580–600, 2017. doi: 10.1109/TOH.2017.2689006.
    [66] C. Pagé, P.-M. Bernier, and M. Trempe. Using video simulations and virtual reality to improve decision-making skills in basketball. Journal of sports sciences, 37(21):2403–2410, 2019. doi: 10.1080/02640414.2019.1638193.
    [67] Y. S. Pai, M. Isogai, K. Kunze, T. Nakao, and H. Kimata. Ubitrain: Leveraging the physical and virtual environment for ubiquitous sports training. In Proc. 2018 ACM Int. Joint Conf. and 2018 Int. Symp. Pervasive and Ubiquitous Computing and Wearable Computers, UbiComp ’18, pages 202–206, New York, NY, USA, 2018. ACM. doi: 10.1145/3267305.3267646.
    [68] T.-Y. Pan, C.-Y. Chang, W.-L. Tsai, and M.-C. Hu. Orsnet: A hybrid neural network for official sports referee signal recognition. In Proc. Of the 1st Int. Workshop on Multimedia Content Analysis in Sports, MM- Sports’18, pages 51–58, New York, NY, USA, 22-26, Oct. 2018. ACM. doi: 10.1145/3265845.3265849.
    [69] D. Panchuk, M. J. Klusemann, and S. M. Hadlow. Exploring the effectiveness of immersive video for training decision-making capability in elite, youth basketball players. Frontiers in psychology, 9:2315, 2018. doi:10.3389/fpsyg.2018.02315.
    [70] K. Petri, P. Emmermacher, M. Danneberg, S. Masik, F. Eckardt, S. Weichelt, N. Bandow, and K. Witte. Training using virtual reality improves response behavior in karate kumite. Sports Engineering, 22(1):2, 2019. doi: 10.1007/s12283-019-0299-0.
    [71] M. Raab, R. S. Masters, and J. P. Maxwell. Improving the`how 'and`what'decisions of elite table tennis players. Human movement science, 24(3):326–344, Jun. 2005. doi: 10.1016/j.humov.2005.06.004.
    [72] J. Radianti, T. A. Majchrzak, J. Fromm, and I. Wohlgenannt. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147:103778, 2020. doi: 10.1016/j.compedu.2019.103778.
    [73] J. O. Ramsay. Functional data analysis. Encyclopedia of Statistical Sciences, 4, 2004. doi: 10.1002/0471667196.ess3138.
    [74] K. Rangarajan, H. Davis, and P. H. Pucher. Systematic review of virtual haptics in surgical simulation: A valid educational tool? Journal of surgical education, 77(2):337–347, 2020. doi: 10.1016/j.jsurg.2019.09.006.
    [75] L. Ross-Stewart, J. Price, D. Jackson, and C. Hawkins. A preliminary investigation into the use of an imagery assisted virtual reality intervention in sport. Journal of Sports Science, 6(1), 2018. doi: 10.17265/2332-7839/2018.01.003.
    [76] E. Ruffaldi and A. Filippeschi. Structuring a virtual environment for sport training: A case study on rowing technique. Robotics and Autonomous Systems, 61(4):390–397, 2013. doi: 10.1016/j.robot.2012.09.015.
    [77] A. Ryge, L. Thomsen, T. Berthelsen, J. S. Hvass, L. Koreska, C. Vollmers, N. C. Nilsson, R. Nordahl, and S. Serafin. Effect on high versus low fidelity haptic feedback in a virtual reality baseball simulation. In 2017 IEEE Virtual Reality (VR), pages 365–366. IEEE, 2017. doi: 10.1109/VR.2017.7892328.
    [78] J. Sampaio, B. Gonçalves, L. Rentero, C. Abrantes, and N. Leite. Exploring how basketball players'tactical performances can be affected by activity workload. Science & Sports, 29(4):e23–e30, 2014. doi: 10.1016/j.scispo.2013.05.004.
    [79] F.-A. Savoie, F. Thénault, K. Whittingstall, and P.-M. Bernier. Visuomotor prediction errors modulate eeg activity over parietal cortex. Scientific reports, 8(1):12513, 2018. doi: 10.1038/s41598-018-30609-0.
    [80] T. Schubert, F. Friedmann, and H. Regenbrecht. The experience of presence: Factor analytic insights. Presence: Teleoperators & Virtual Environments, 10(3):266–281, 2001. doi: 10.1162/105474601300343603.
    [81] R. Sigrist, G. Rauter, L. Marchal-Crespo, R. Riener, and P. Wolf. Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning. Experimental brain research, 233(3):909–925, 2015. doi: 10.1007/s00221-014-4167-7.
    [82] B. W. Silverman. Density Estimation for statistics and Data Analysis. Routledge, 2018. doi: 10.1201/9781315140919.
    [83] A. K. Singh, H.-T. Chen, Y.-F. Cheng, J.-T. King, L.-W. Ko, K. Gramann, and C.-T. Lin. Visual appearance modulates prediction error in virtual reality. IEEE Access, 6:24617–24624, 2018. doi: 10.1109/ACCESS.2018.2832089.
    [84] B. L. Smits, G.-J. Pepping, and F. J. Hettinga. Pacing and decision making in sport and exercise: the roles of perception and action in the regulation of exercise intensity. Sports Medicine, 44(6):763–775, Apr. 2014. doi: 10.1007/s40279-014-0163-0.
    [85] D. Spelmezan. An investigation into the use of tactile instructions in snow-boarding. In Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services, pages 417–426, 2012. doi: 10.1145/2371574.2371639.
    [86] E. Sports. Eon sports vr. (n.d.)., 2016. accessed on 29 January 2020.
    [87] E. M. Staurset and E. Prasolova-Førland. Creating a smart virtual reality simulator for sports training and education. In Smart Education and e-Learning 2016, pages 423–433. Springer, 2016. doi: 10.1007/978-3-319-39690-3_38.
    [88] C. Stinson and D. A. Bowman. Feasibility of training athletes for high-pressure situations using virtual reality. IEEE Transactions on Visualization and Computer Graphics, 20(4):606–615, 2014. doi: 10.1109/TVCG.2014.23.
    [89] R. Therón and L. Casares. Visual analysis of time-motion in basketball games. In International Symposium on Smart Graphics, pages 196–207. Springer, 2010. doi: 10.1007/978-3-642-13544-6_19.
    [90] S. Ullah and C. F. Finch. Applications of functional data analysis: A systematic review. BMC medical research methodology, 13(1):43, 2013. doi:10.1186/1471-2288-13-43.
    [91] M. Usoh, E. Catena, S. Arman, and M. Slater. Using presence questionnaires in reality. Presence: Teleoperators & Virtual Environments, 9(5):497–503, Oct. 2000. doi: 10.1162/105474600566989.
    [92] J. B. Van Erp, I. Saturday, and C. Jansen. Application of tactile displays in sports: where to, how and when to move. In Proc. Eurohaptics, pages 105–109. Citeseer, 2006.
    [93] N. Vignais, B. Bideau, C. Craig, S. Brault, F. Multon, and R. Kulpa. Virtual environments for sport analysis: perception-action coupling in handball goalkeeping. Int. Journal of Virtual Reality, 8(4), Jan. 2009. doi: 10.20870/IJVR.2009.8.4.2748.
    [94] N. Vignais, R. Kulpa, S. Brault, D. Presse, and B. Bideau. Which technology to investigate visual perception in sport: Video vs. virtual reality. Human Movement Science, 39:12–26, 2015. doi: 10.1016/j.humov.2014.10.006.
    [95] M. Wellner, R. Sigrist, J. von Zitzewitz, P. Wolf, and R. Riener. Does a virtual audience influence rowing? Proc. Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 224(1):117–128, Mar. 2010. doi: 10.1243/17543371JSET33.
    [96] S. E. Williams and J. Cumming. Measuring athlete imagery ability: The sport imagery ability questionnaire. Journal of Sport and Exercise Psychology, 33(3):416–440, 2011. doi: 10.1123/jsep.33.3.416.
    [97] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987. doi:10.1016/0169-7439(87)80084-9.
    [98] K.-H. Wu, W.-L. Tsai, T.-Y. Pan, and M.-C. Hu. Robust basketball player tracking based on a hybrid detection grouping framework for overlapping cameras. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), 2019. doi: 10.1109/BigData47090.2019.9005551.
    [99] Y. Zhao, C. L. Bennett, H. Benko, E. Cutrell, C. Holz, M. R. Morris, and M. Sinclair. Enabling people with visual impairments to navigate virtual reality with a haptic and auditory cane simulation. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, page 116. ACM, 2018. doi: 10.1145/3173574.3173690.
    [100] Y. P. Zinchenko, G. Y. Menshikova, A. M. Chernorizov, and A. E. Voyskunskiy. Technologies of virtual reality in psychology of sport of great advance: theory, practice and perspectives. Psychology in Russia: State of the art, 4:129–152, 2011. doi: 10.11621/pir.2011.0008.

    無法下載圖示 校內:2026-08-24公開
    校外:2026-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE