簡易檢索 / 詳目顯示

研究生: 林易伸
Lin, Yi-Shen
論文名稱: 合成結構多樣之生質氣凝膠材料應用於去除水中污染物
The Synthesis of Structurally Diverse Bio-based Aerogel Materials toward Aqueous Pollutant Removal
指導教授: 侯文哲
Hou, Wen-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 47
中文關鍵詞: 海藻酸氣凝膠雙酚A光降解吸附
外文關鍵詞: Alginate Aerogel, Bisphenol A, Photodegradation, Soprtion
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這項研究中,我們利用生物質藻酸鹽材料作為原料與多種價數陽離子(H+、Ba2+、Fe3+和 Ce4+)合成結構多樣的藻酸鹽氣凝膠(AA)材料。雙酚A(BPA)是一種持久性內分泌干擾化合物(EDC)用來作為目標有機污染物。在合成的AA材料上對於BPA的光反應性和吸附性質方面進行了檢測。我們發現鋇AA(BAA)在整體上表現出最優秀的光反應性能。例如,它在中性pH下太陽光輻射1小時後去除75-80%的BPA(5mg / L),同時保持其物理完整性。 BAA材料可以重複使用三次而不會明顯失去其光反應性。 BPA光反應遵循一階反應動力學並且與Langmuir-Hinshelwood動力學方程一致,可解讀為表面反應。反應中所產生的氫氧自由基在去除BPA上扮演重要的角色;而光反應下需要草酸鹽,做為可能的電子供給者:另外發現在較低的草酸鹽濃度(<5mM)下攪拌會加速光反應的效率,這意味著草酸鹽和AA的接觸是重要的。光反應也依賴pH值,BPA在中性和酸性條件下有更好的去除效果。而添加天然有機物(NOM)對BPA光反應的影響可忽略不計。我們也初步推測了幾種中間產物,隨著長時間的照射而降低其濃度。
    鈰AA(CAA)表現出良好的BPA吸附性,例如pH在3和7的暗反應下,25分鐘內幾乎完全除去5mg / L的BPA;BPA吸附的等溫線符合典型的Langmuir和Freundlich方程式。總而言之,我們的研究結果表明,AA材料的結構、光反應性和吸附特性取決於合成的條件,特別是所用的陽離子。

    In this study, we utilized a bio-based alginate material as the feedstock to synthesize structurally diverse alginate aerogel (AA) materials, whose formation was dependent on the presence of multivalent cations (H+, Ba2+, Fe3+, and Ce4+). The synthesized AA materials were examined in terms of their photoreactivity and sorption properties in the removal of bisphenol A (BPA), a persistent endocrine-disrupting compound (EDC) used as a model organic pollutant, from the aqueous environment. We found that barium AA (BAA) exhibited the greatest photoreaction performance overall. For example, it removed 75-80% of BPA (5 mg/L) in 1 h of solar irradiation at neutral pH, while maintaining its physical integrity. The BAA material could be reused for three time without significantly losing its photoreactivity. The BPA photoreaction follows 1st-order kinetics and agrees with Langmuir-Hinshelwood kinetic equation, suggesting a surface reaction. Hydroxyl radical was produced and played a major role in the removal of BPA. Oxalate was required in this process, potentially acting as an electron donor. Stirring was found to enhance photoreaction at lower oxalate concentrations (< 5mM) used, suggesting that the contact of oxalate and AA is important. The photoreaction was pH dependent with neutral and acidic conditions showing greater BPA removal. The addition of natural organic matter (NOM) has a negligible effect on BPA photoreaction. Several intermediate products were tentatively suggested, and their concentrations generally decreased over long-term irradiation.
    Cerium AA (CAA) exhibited good sorption of BPA. For example, 5 mg/L of BPA was nearly completely removed in 25 min in the dark at pH = 3 and 7. The isotherm for BPA sorption fits with classic Langmuir and Freundlich equations. Overall, our findings indicate that the structures, photoreactivity, and sorption characteristics of AA materials depend on the synthesis conditions particularly the cations used.

    摘要 I Abstract II List of Tables VI List of Figures VII Chapter 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Objective 2 Chapter 2 LITERATURE REVIEWS 4 2.1 Properties and application of alginate 4 2.2 The toxicity of BPA 5 2.3 Treatment method of BPA 6 2.4 Applications of alginate gels in pollutant removal 7 Chapter 3 MATERIALS AND METHODS 8 3.1 Materials 8 3.2 Preparation of AA materials 8 3.3 Photoreaction experiments 9 3.4 Sorption experiments 10 3.5 Chemical analyses 11 3.5.1 BPA measurements 11 3.5.2 Oxalate measurements 12 3.5.3 Hydroxyl radical measurements 12 3.6 Characterization of AA materials 13 3.6.1 Scanning Electron Microscope (SEM) 13 3.6.2 X-ray Photoelectron Spectroscopy (XPS) 13 3.6.3 Fourier-transform infrared spectroscopy (FTIR) 14 3.6.4 Zeta potential 14 Chapter 4 RESULTS AND DISSCUSSION 15 4.1 Characterization of AA materials 15 4.2 Photoreactivity of AA materials 19 4.3 Solution chemistry on photodegradation of BPA 21 4.4 Natural organic matter (NOM) effect 24 4.5 Factors affecting BPA degradation 24 4.6 The relationship of oxalate, BPA and pCBA depletion 26 4.7 Langmuir-Hinshelwood kinetics 27 4.8 Potential product identification 29 4.9 Reusability of BAA 31 4.10 Comparing the photoreactivity of BAA and TiO2 33 4.11 Sorption experiments 34 4.12 BPA sorption isotherms 35 4.13 The pH effect of BPA sorption 36 Chapter 5 CONCLUSION AND RECOMMENDATIOMS 38 5.1 Conclusions 38 5.2 Recommendations 39 SUPPORTING INFORMATION 40 REFERENCE 42

    Staples, C. A.; Dome, P. B.; Klecka, G. M.; Oblock, S. T.; Harris, L. R. A Review of the Environmental Fate, Effects, and Exposures of Bisphenol A. Chemosphere 1998, 36 (10), 2149–2173.
    Mountfort, K. A.; Kelly, J.; Jickells, S. M.; Castle, L. Investigations into the Potential Degradation of Polycarbonate Baby Bottles during Sterilization with Consequent Release of Bisphenol A. Food Additives & Contaminants 1997, 14 (6–7), 737–740.
    Corrales, J.; Kristofco, L. A.; Steele, W. B.; Yates, B. S.; Breed, C. S.; Williams, E. S.; Brooks, B. W. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose-Response 2015, 13 (3), 1559325815598308.
    Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016, 50 (11), 5438–5453.
    Vandenberg, L. N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W. V. Human Exposure to Bisphenol A (BPA). Reproductive Toxicology 2007, 24 (2), 139–177.
    Crain, D. A.; Eriksen, M.; Iguchi, T.; Jobling, S.; Laufer, H.; LeBlanc, G. A.; Guillette, L. J. An Ecological Assessment of Bisphenol-A: Evidence from Comparative Biology. Reproductive Toxicology 2007, 24 (2), 225–239.
    Hou, W.-C.; Lin, C.-Y. Sunlight-responsive Bio-based Alginate Aerogel: Reduction of Hexavalent Chromium and Hydroxyl Radical Induced Oxidation 2018.
    Augst, A. D.; Kong, H. J.; Mooney, D. J. Alginate Hydrogels as Biomaterials. Macromolecular Bioscience 2006, 6 (8), 623–633.
    Zheng, H. Interaction Mechanism in Sol-Gel Transition of Alginate Solutions by Addition of Divalent Cations. Carbohydrate Research 1997, 302 (1), 97–101.
    Pawar, S. N.; Edgar, K. J. Alginate Derivatization: A Review of Chemistry, Properties and Applications. Biomaterials 2012, 33 (11), 3279–3305.
    Zhao, S.; Malfait, W. J.; Guerrero-Alburquerque, N.; Koebel, M. M.; Nyström, G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angewandte Chemie International Edition 2018, 57 (26), 7580–7608.
    Malafaya, P. B.; Silva, G. A.; Reis, R. L. Natural–Origin Polymers as Carriers and Scaffolds for Biomolecules and Cell Delivery in Tissue Engineering Applications. Advanced Drug Delivery Reviews 2007, 59 (4), 207–233.
    Glicksman, M. Utilization of Seaweed Hydrocolloids in the Food Industry. In Twelfth International Seaweed Symposium; Ragan, M. A., Bird, C. J., Eds.; Developments in Hydrobiology; Springer Netherlands, 1987; pp 31–47.
    Boateng, J. S.; Matthews, K. H.; Stevens, H. N. E.; Eccleston, G. M. Wound Healing Dressings and Drug Delivery Systems: A Review. Journal of Pharmaceutical Sciences 2008, 97 (8), 2892–2923.
    Veronovski, A.; Knez, Ž.; Novak, Z. Preparation of Multi-Membrane Alginate Aerogels Used for Drug Delivery. The Journal of Supercritical Fluids 2013, 79, 209–215.
    Smidsrød, O.; Skja˚k-Br˦k, G. Alginate as Immobilization Matrix for Cells. Trends in Biotechnology 1990, 8, 71–78.
    Takayanagi, S.; Tokunaga, T.; Liu, X.; Okada, H.; Matsushima, A.; Shimohigashi, Y. Endocrine Disruptor Bisphenol A Strongly Binds to Human Estrogen-Related Receptor γ (ERRγ) with High Constitutive Activity. Toxicology Letters 2006, 167 (2), 95–105.
    Richter, C. A.; Birnbaum, L. S.; Farabollini, F.; Newbold, R. R.; Rubin, B. S.; Talsness, C. E.; Vandenbergh, J. G.; Walser-Kuntz, D. R.; vom Saal, F. S. In Vivo Effects of Bisphenol A in Laboratory Rodent Studies. Reproductive Toxicology 2007, 24 (2), 199–224.
    Lee, Y. M.; Seong, M. J.; Lee, J. W.; Lee, Y. K.; Kim, T. M.; Nam, S.-Y.; Kim, D. J.; Yun, Y. W.; Kim, T. S.; Han, S. Y.; et al. Estrogen Receptor Independent Neurotoxic Mechanism of Bisphenol A, an Environmental Estrogen. Journal of Veterinary Science 2007, 8 (1), 27–38.
    Hunt, P. A.; Lawson, C.; Gieske, M.; Murdoch, B.; Smith, H.; Marre, A.; Hassold, T.; VandeVoort, C. A. Bisphenol A Alters Early Oogenesis and Follicle Formation in the Fetal Ovary of the Rhesus Monkey. PNAS 2012, 109 (43), 17525–17530.
    Katsumata, H.; Kawabe, S.; Kaneco, S.; Suzuki, T.; Ohta, K. Degradation of Bisphenol A in Water by the Photo-Fenton Reaction. Journal of Photochemistry and Photobiology A: Chemistry 2004, 162 (2), 297–305.
    Ioan, I.; Wilson, S.; Lundanes, E.; Neculai, A. Comparison of Fenton and Sono-Fenton Bisphenol A Degradation. Journal of Hazardous Materials 2007, 142 (1), 559–563.
    Deborde, M.; Rabouan, S.; Mazellier, P.; Duguet, J.-P.; Legube, B. Oxidation of Bisphenol A by Ozone in Aqueous Solution. Water Research 2008, 42 (16), 4299–4308.
    Cui, Y.; Li, X.; Chen, G. Electrochemical Degradation of Bisphenol A on Different Anodes. Water Research 2009, 43 (7), 1968–1976.
    Chang, B. V.; Yuan, S. Y.; Chiou, C. C. Biodegradation of Bisphenol-A in River Sediment. Journal of Environmental Science and Health, Part A 2011, 46 (9), 931–937.
    Bautista-Toledo, I.; Ferro-García, M. A.; Rivera-Utrilla, J.; Moreno-Castilla, C.; Vegas Fernández, F. J. Bisphenol A Removal from Water by Activated Carbon. Effects of Carbon Characteristics and Solution Chemistry. Environ. Sci. Technol. 2005, 39 (16), 6246–6250.
    Kaneco, S.; Rahman, M. A.; Suzuki, T.; Katsumata, H.; Ohta, K. Optimization of Solar Photocatalytic Degradation Conditions of Bisphenol A in Water Using Titanium Dioxide. Journal of Photochemistry and Photobiology A: Chemistry 2004, 163 (3), 419–424.
    Chiang, K.; Lim, T. M.; Tsen, L.; Lee, C. C. Photocatalytic Degradation and Mineralization of Bisphenol A by TiO2 and Platinized TiO2. Applied Catalysis A: General 2004, 261 (2), 225–237.
    Guo, C.; Ge, M.; Liu, L.; Gao, G.; Feng, Y.; Wang, Y. Directed Synthesis of Mesoporous TiO2 Microspheres: Catalysts and Their Photocatalysis for Bisphenol A Degradation. Environ. Sci. Technol. 2010, 44 (1), 419–425.
    Kuo, C.-Y. Comparison with As-Grown and Microwave Modified Carbon Nanotubes to Removal Aqueous Bisphenol A. Desalination 2009, 249 (3), 976–982.
    Xu, J.; Wang, L.; Zhu, Y. Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption. Langmuir 2012, 28 (22), 8418–8425.
    Xiao, G.; Fu, L.; Li, A. Enhanced Adsorption of Bisphenol A from Water by Acetylaniline Modified Hyper-Cross-Linked Polymeric Adsorbent: Effect of the Cross-Linked Bridge. Chemical Engineering Journal 2012, 191, 171–176.
    Kitaoka, M.; Hayashi, K. Adsorption of Bisphenol A by Cross-Linked β-Cyclodextrin Polymer. Journal of Inclusion Phenomena 2002, 44 (1), 429–431.
    Monakhova, Y.; Agulhon, P.; Quignard, F.; Tanchoux, N.; Tichit, D. New Mixed Lanthanum- and Alkaline-Earth Cation-Containing Basic Catalysts Obtained by an Alginate Route. Catalysis Today 2012, 189 (1), 28–34.
    Agulhon, P.; Constant, S.; Chiche, B.; Lartigue, L.; Larionova, J.; Di Renzo, F.; Quignard, F. Controlled Synthesis from Alginate Gels of Cobalt–Manganese Mixed Oxide Nanocrystals with Peculiar Magnetic Properties. Catalysis Today 2012, 189 (1), 49–54.
    Buaki‐Sogo, M., Serra, M., Primo, A., Alvaro, M., & Garcia, H. (2013). Alginate as template in the preparation of active titania photocatalysts. ChemCatChem, 5(2), 513-518.
    Primo, A., Aguado, E., & Garcia, H. (2013). CO2‐fixation on aliphatic α, ω‐diamines to form cyclic ureas, catalyzed by ceria nanoparticles that were obtained by templating with alginate. ChemCatChem, 5(4), 1020-1023.
    Mallepally, R. R.; Bernard, I.; Marin, M. A.; Ward, K. R.; McHugh, M. A. Superabsorbent Alginate Aerogels. The Journal of Supercritical Fluids 2013, 79, 202–208.
    Wang, Z.; Huang, Y.; Wang, M.; Wu, G.; Geng, T.; Zhao, Y.; Wu, A. Macroporous Calcium Alginate Aerogel as Sorbent for Pb2+ Removal from Water Media. Journal of Environmental Chemical Engineering 2016, 4 (3), 3185–3192.
    Huang, Y.; Wang, Z. Preparation of Composite Aerogels Based on Sodium Alginate, and Its Application in Removal of Pb2+and Cu2+from Water. International Journal of Biological Macromolecules 2018, 107, 741–747.
    Feng, J.; Ding, H.; Yang, G.; Wang, R.; Li, S.; Liao, J.; Li, Z.; Chen, D. Preparation of Black-Pearl Reduced Graphene Oxide–Sodium Alginate Hydrogel Microspheres for Adsorbing Organic Pollutants. Journal of Colloid and Interface Science 2017, 508, 387–395.
    Papageorgiou, S. K.; Katsaros, F. K.; Favvas, E. P.; Romanos, G. Em.; Athanasekou, C. P.; Beltsios, K. G.; Tzialla, O. I.; Falaras, P. Alginate Fibers as Photocatalyst Immobilizing Agents Applied in Hybrid Photocatalytic/Ultrafiltration Water Treatment Processes. Water Research 2012, 46 (6), 1858–1872.
    Lavorato, C.; Primo, A.; Molinari, R.; García, H. Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catal. 2014, 4 (2), 497–504.
    Ma, Y.; Wang, J.; Xu, S.; Feng, S.; Wang, J. Ag2O/Sodium Alginate-Reduced Graphene Oxide Aerogel Beads for Efficient Visible Light Driven Photocatalysis. Applied Surface Science 2018, 430, 155–164.
    Yu, M.; Zhang, H.; Yang, F. Hydrophilic and Compressible Aerogel: A Novel Draw Agent in Forward Osmosis. ACS Appl. Mater. Interfaces 2017, 9 (39), 33948–33955.
    Yin, S.; Ma, Z. “Smart” Sensing Interface for the Improvement of Electrochemical Immunosensor Based on Enzyme-Fenton Reaction Triggered Destruction of Fe3+ Cross-Linked Alginate Hydrogel. Sensors and Actuators B: Chemical 2019, 281, 857–863.
    Joseph, L.; Zaib, Q.; Khan, I. A.; Berge, N. D.; Park, Y.-G.; Saleh, N. B.; Yoon, Y. Removal of Bisphenol A and 17α-Ethinyl Estradiol from Landfill Leachate Using Single-Walled Carbon Nanotubes. Water Research 2011, 45 (13), 4056–4068.
    Hou, W.-C.; He, C.-J.; Wang, Y.-S.; Wang, D. K.; Zepp, R. G. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon. Environ. Sci. Technol. 2016, 50 (7), 3494–3502.
    Valentin, R.; Horga, R.; Bonelli, B.; Garrone, E.; Di Renzo, F.; Quignard, F. FTIR Spectroscopy of NH3 on Acidic and Ionotropic Alginate Aerogels. Biomacromolecules 2006, 7 (3), 877–882.
    Sujana, M. G.; Mishra, A.; Acharya, B. C. Hydrous Ferric Oxide Doped Alginate Beads for Fluoride Removal: Adsorption Kinetics and Equilibrium Studies. Applied Surface Science 2013, 270, 767–776.
    Qiusheng, Z.; Xiaoyan, L.; Jin, Q.; Jing, W.; Xuegang, L. Porous Zirconium Alginate Beads Adsorbent for Fluoride Adsorption from Aqueous Solutions. RSC Adv. 2014, 5 (3), 2100–2112.
    Dreissig, I.; Machill, S.; Salzer, R.; Krafft, C. Quantification of Brain Lipids by FTIR Spectroscopy and Partial Least Squares Regression. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2009, 71 (5), 2069–2075.
    Dong, Y.; Wu, D.; Chen, X.; Lin, Y. Adsorption of Bisphenol A from Water by Surfactant-Modified Zeolite. Journal of Colloid and Interface Science 2010, 348 (2), 585–590.
    Zhang, N.; Liu, G.; Liu, H.; Wang, Y.; He, Z.; Wang, G. Diclofenac Photodegradation under Simulated Sunlight: Effect of Different Forms of Nitrogen and Kinetics. Journal of Hazardous Materials 2011, 192 (1), 411–418.
    Kumar, K. V.; Porkodi, K.; Rocha, F. Langmuir–Hinshelwood Kinetics – A Theoretical Study. Catalysis Communications 2008, 9 (1), 82–84.
    Ohko, Y.; Ando, I.; Niwa, C.; Tatsuma, T.; Yamamura, T.; Nakashima, T.; Kubota, Y.; Fujishima, A. Degradation of Bisphenol A in Water by TiO2 Photocatalyst. Environ. Sci. Technol. 2001, 35 (11), 2365–2368.
    Foo, K. Y.; Hameed, B. H. Insights into the Modeling of Adsorption Isotherm Systems. Chemical Engineering Journal 2010, 156 (1), 2–10.
    Hameed, B. H.; Ahmad, A. A.; Aziz, N. Isotherms, Kinetics and Thermodynamics of Acid Dye Adsorption on Activated Palm Ash. Chemical Engineering Journal 2007, 133 (1), 195–203.
    Febrianto, J.; Kosasih, A. N.; Sunarso, J.; Ju, Y.-H.; Indraswati, N.; Ismadji, S. Equilibrium and Kinetic Studies in Adsorption of Heavy Metals Using Biosorbent: A Summary of Recent Studies. Journal of Hazardous Materials 2009, 162 (2), 616–645.

    無法下載圖示 校內:2024-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE