簡易檢索 / 詳目顯示

研究生: 林凱俊
Lim, Kai-chuin
論文名稱: 智慧型自主式駕駛控制器之設計與實現
Design and Implementation of Intelligent Autonomous Driving Controller for Car-Like Mobile Robot
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 110
中文關鍵詞: 類神經網路自動停車模糊控制智慧型機器人自動導航
外文關鍵詞: lane recognition, robotics, auto-parking, intelligent, neural network, fuzzy control
相關次數: 點閱:78下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討如何設計與實現具智慧型自主式駕駛控制器。此控制器可依據個人行動電話透過藍芽傳輸下達命令、整合超音波感測器陣列以及網路攝影機所得資訊以了解本身與外界環境之關係,利用NIOS 嵌入式系統來整合計算這些資料,接者運用模糊控制法與類神經網路架構來控制車型機器人之行為。在論文中,首先描述整個車型機器人之硬體架構與設定,再分別對車體上的NIOS嵌入式系統發展版、直流馬達單元、伺服馬達單元、驅動電路、超音波感測器、加速度計、行動電話及網路攝影機等作分別的介紹與說明。接著探討如何處理與分析超音波感測器、加速度計以及網路攝影機所輸入進來的訊號。再者提出以模糊邏輯控制法則以及類神經網路架構來達成運動控制、防撞、自動導航、自我修正/學習、影像辨識以及自動停車等等問題的探討。最後以實驗結果展現此多功能智慧型自主式駕駛控制器之可行性與實用性。

    This thesis presents the design and implementation of the intelligent autonomous driving controller and accomplishes it in a car-like mobile robot (CLMR). This CLMR possesses the function to accept the command from the cellular phone through Bluetooth, and estimates the environment by integration of ultrasonic sensors array and image sensors. We utilize the NIOS embedded system development board to compute these data and decide the reactive behavior by the fuzzy logic control (FLC) and neural network.
    In the thesis, we first describe the system architecture of the CLMR, which contains the reconstruction of the chassis of the CLMR, NIOS development board, DC motor unit, servo motor unit, driver circuit, ultrasonic sensors, accelerometer, cellular phone, and image sensors. Secondly, we address how to process and analyze the input signals of image sensors, ultrasonic sensors, and accelerometer. Furthermore, we develop the fuzzy logic control and neural network to accomplish several functions such as motion control, collision prevention, lane following, self-learning, image recognition, and auto-parking. Finally, it is perceived that our intelligent autonomous driving controller is feasible and effective from the practical experiments.

    摘 要 I Abstract II Acknowledgment III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES X Chapter 1. Introduction 1 1.1 Preliminary 1 1.2 Thesis Organization3 Chapter 2. Hardware Architecture of Car-Like Mobile Robot 5 2.1 Introduction 5 2.2 Overview of CLMR 6 2.3 System Architecture 7 2.4 Hardware Structure 8 2.4.1 Central Processing Units: NIOS + NB + CP 8 2.4.2 Power System 16 2.4.3 Vision System 17 2.4.4 Driving Control 18 2.4.5 Steering Control 22 2.4.6 Ultrasonic Sensor Module 23 2.4.7 Accelerometer 25 2.5 Summary 28 Chapter 3. Vision, Sensing, and Motion System 29 3.1 Introduction 29 3.2 Graphical User Interface (GUI) 30 3.2.1 Intelligent Autonomous Driving System UI (Notebook) 31 3.2.2 Vehicle Remote Control System (Cellular Phone) 31 3.3 Vision System 33 3.3.1 The Image Sensor Structure and Parameter Setting 34 3.3.2 Image Processing and Detection for Lane Following 38 3.3.3 Image Processing and Detection for Auto-Parking 44 3.4 Sensing System 49 3.4.1 Ultrasonic Sensors Array Design 49 3.4.2 Accelerometer filtering and measuring 53 3.5 Motion System 54 3.5.1 The Motion Design of DC Servo Motor 55 3.5.2 The Motion Design of Turning Servo Motor 55 3.5.3 The Design of Feedback Decoder Unit 56 3.6 Summary 59 Chapter 4. Controllers and Behavior Fusion Design 60 4.1 Introduction 60 4.2 Fuzzy Logic Controller 61 4.2.1 Fuzzification Interface (FI) 62 4.2.2 Decision Making Logic (DML) 62 4.2.3 Knowledge Base (KB) 62 4.2.4 Defuzzification Interface (DI) 63 4.3 The Design of Collision Prevention System 64 4.4 Controller Design for Lane Following 65 4.4.1 Back Propagation Neural Network apply in steering control 66 4.4.2 Wall Following Controller Design 70 4.4.3 FLC Speed Control 71 4.5 Controller Design for Auto-Parking 75 4.5.1 Kinematical Model of the CLMR Trajectory for Backward Motion 75 4.5.2 Procedure of Auto-parking 82 4.5.3 Auto-parking in Complex Condition 83 4.6 The Design of the Manual Driving Mode (Remote Control) 86 4.7 Inclined Plane Detection and Control 87 4.8 Summary 89 Chapter 5. Experimental Results 90 5.1 Introduction 90 5.2 Experimental Results 91 5.3 Summary 102 Chapter 6. Conclusion and Future Works 103 6.1 Conclusion 103 6.2 Future Works 104 References 105 Biography 110

    [1] M. Sugeno and K. Murakami, “An experimental study on fuzzy parking control using a model car,” Industrial Applications of Fuzzy Control, M. Sugeno, Ed. North-Holland, The Netherlands, pp. 105–124, 1985.
    [2] M. Sugeno, T. Murofushi, T. Mori, T. Tatematsu, and J. Tanaka, “Fuzzy algorithmic control of a model car by oral instructions,” Fuzzy Sets Syst., vol. 32, pp. 207–219, 1989.
    [3] A. Ohata and M. Mio, “Parking control based on nonlinear trajectory control for low speed vehicles,” in Proc. IEEE Int. Conf. Industrial Electronics, 1991, pp. 107–112.
    [4] S. Yasunobu and Y. Murai, “Parking control based on predictive fuzzy control,” in Proc. IEEE Int. Conf. Fuzzy Systems, vol. 2, 1994, pp. 1338–1341.
    [5] W. A. Daxwanger and G. K. Schmidt, “Skill-based visual parking control using neural and fuzzy networks,” in Proc. IEEE Int. Conf. System, Man, Cybernetics, vol. 2, 1995, pp. 1659–1664.
    [6] A. Tayebi and A. Rachid, “A time-varying-based robust control for the parking problem of a wheeled mobile robot,” in Proc. IEEE Int. Conf. Robotics and Automation, 1996, pp. 3099–3104.
    [7] M. C. Leu and T. Q. Kim, “Cell mapping based fuzzy control of car parking,” in Proc. IEEE Int. Conf. Robotics Automation, 1998, pp. 2494–2499.
    [8] H. An, T. Yoshino, D. Kashimoto, M. Okubo, Y. Sakai, and T. Hamamoto, “Improvement of convergence to goal for wheeled mobile robot using parking motion,” in Proc. IEEE Int. Conf. Intelligent Robots Systems, 1999, pp. 1693–1698.
    [9] B. Shirazi and S. Yih, “Learning to control: a heterogeneous approach,” in Proc. IEEE Intl. Symp. Intelligent Control, 1989, pp. 320–325.
    [10] M. Ohkita, H. Mitita, M. Miura, and H. Kuono, “Traveling experiment of an autonomous mobile robot for a flush parking,” in Proc. 2nd IEEE Conf. Fuzzy System, vol. 2, Francisco, CA, 1993, pp. 327–332.
    [11] D. Lyon, “Parallel parking with curvature and nonholonomic constraints,” in Proc. Symp. Intelligent Vehicles, Detroit, MI, 1992, pp. 341–346.
    [12] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: steering using sinusoids,” IEEE Trans. Automat. Contr., vol. 38, pp. 700–716, May 1993.
    [13] J. P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, “A motion planner for nonholonomic mobile robots,” IEEE Trans. Robot. Automat., vol. 10, pp. 577–593, Oct. 1994.
    [14] I. E. Paromtchik and C. Laugire, “Motion generation and control for parking an autonomous vehicle,” in Proc. IEEE Conf. Robotics Automation, vol. 4, Minneapolis, MN, 1996, pp. 3117–3122.
    [15] C. Laugier, T. Fraichard, I. E. Paromtchik, and P. Garnier, “Sensor-based control architecture for a car-like vehicle,” in Proc. IEEE Int. Conf. Intelligent Robots Systems, 1998, pp. 216–222.
    [16] D. Leitch and P. J. Probert, “New techniques for genetic development of a class of fuzzy controllers,” IEEE Trans. Syst., Man, Cybern. C, vol. 28, pp. 112–123, Feb. 1998.
    [17] L. Dorst, “Analyzing the behaviors of a car: a study in abstraction of goal-directed motions,” IEEE Trans. Syst., Man, Cybern. A, vol. 28, pp. 811–822, Nov. 1998.
    [18] J. Xiu, G. Chen, and M. Xie, “Vision-guided automatic parking for smart car,” in Proc. IEEE Intelligent Vehicles Symp., 2000, pp. 725–730.
    [19] T.C. Lee, C.Y. Tsai, and K.T. Song, “Fast parking control of mobile robots: a motion planning approach with experimental validation,” IEEE Trans. Contr. Syst. Technol., vol. 12, pp. 661-676, September 2004
    [20] K.Y. Lian, C. S. Chin, and T. S. Chiang, “Parallel parking a car-like robot using fuzzy gain scheduling,” in Proc. 1999 IEEE Int. Conf. Control Applications, vol. 2, 1999, pp. 1686–1691.
    [21] K. Jiang and L. D. Seneviratne, “A sensor guided autonomous parking system for nonholonomic mobile robots,” in Proc. IEEE Int. Conf. Robotics Automation, vol. 1, 1999, pp. 311–316.
    [22] K. Jiang, “A sensor guided parallel parking system for nonholonomic vehicles,” in Proc. IEEE Conf. Intelligent Transportation Systems, 2000, pp. 270–275.
    [23] L. A. Zadeh, “Fussy Sets,” Informat. Contr., Vol. 8, pp. 338-353, 1965.
    [24] L. A. Zadeh, “Fuzzy Algorithms,” Inform. Control, Vol. 12, pp. 94-102, 1968.
    [25] S. Lee, M. Kim, Y. Youm, and W. Chung, “Control of a car-like mobile robot for parking problem,” in Proc. IEEE Int. Conf. Robotics Automation, 1999, pp. 1–6.
    [26] T.-H. S. Li and S.-J. Chang, “Autonomous Fuzzy Parking Control of a Car-Like Mobile Robot,” IEEE Trans. Systems, Man, and Cybernetics, vol. 33, pp. 451–465, 2003.
    [27] T.-H. S. Li, S.-J. Chang, and Y. X. Chen, “Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot,” IEEE Trans. Industrial Electronics, vol. 50, NO.5, pp. 867-880, 2003.
    [28] C. S. Ting, T. H. S. Li, and F. C. Kung, “An approach to systematic design of the fuzzy control system,” Fuzzy Sets Syst., vol. 77, pp. 151–166, 1996.
    [29] T. H. S. Li and M. Y. Shieh, “Switching-type fuzzy sliding mode control of a cart-pole system,” Mechatronics, vol. 10, pp. 91–109, 2000.
    [30] O. Kaynak, K. Erbatur, and M. Ertugrul, “The fusion of computationally intelligent methodologies and sliding-mode control—a survey,” IEEE Trans. Ind. Electron., vol. 48, pp. 4–17, Feb. 2001.
    [31] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo control,” IEEE Trans. Robot. Automat., vol. 12, pp. 651–669, Oct. 1996.
    [32] J. S. Cho, H. W. Kim, and I. S. Kweon, “Image-based visual servoing using position and angle of image features,” Electron. Lett., vol. 37, pp. 208–214, 2001.
    [33] http://www.altera.com
    [34] User’s Manual, L293D Quadruple Half-H Derivers, June, 2002.
    [35] 陳意翔,具智慧型停車功能車型機器人之設計與研製,國立成功大學電機系碩士論文,2002。
    [36] 張其正,以Nios嵌入式系統設計實現雙感測器車型機器人之全自主式停車控制器,國立成功大學電機系碩士論文,2005。
    [37] 石博宇,駕駛助理視覺系統之日間高速公路前車及鄰接車輛偵測,國立中正大學工學院電機工程研究所碩士論文,2003
    [38] C Bala Kumar、Paul J. Kline、Timothy J. Thompson, Bluetooth Application Programming with the Java APIs, 2004
    [39] 微型爪哇人、世界和平,手機程式開發實務,電腦人文化事業
    [40] 吳俊達,車型機器人之多功能智慧型停車控制器設計與實現,國立成功大學電機系碩士論文,2006
    [41] G. G. Rigatos, S. G. Tzafestas, and G. J. Evangelidis, “Reactive parking control of nonholonomic vehicles via a fuzzy learning automaton,” in IEE Proc. –Control Theory Appl., vol. 148, pp. 169-179, March 2001.
    [42] R. Rajamani, C. Zhu, and L. Alexander, “Lateral control of a backward driven front-steering vehicle,” Control Engineering Practice, vol. 11, pp. 531-540, 2003.
    [43] A. El Hajjaji and S. Bentalba, “Fuzzy path tracking control for automatic steering of vehicles”, Robotics and Autonomous Systems 43, 203–213, 2003.
    [44] J. M. Armingola, A. de la Escaleraa, C. Hilarioa, J. M. Colladoa, J. P. Carrascoa, M. J. Floresa, J. M. Pastorb, and F. J. Rodr´ıgueza, “IVVI: Intelligent vehicle based on visual information,” Robotics and Autonomous Systems 55, 904–916, 2007.
    [45] Z.-W. Kim, “Robust Lane Detection and Tracking in Challenging Scenarios,” IEEE Trans. ITS, vol. 9, pp. 16-26, Mar. 2008.
    [46] H.-Y. Cheng, B.-S. Jeng, P.-T. Tseng, and K.-C. Fan, “Lane Detection With Moving Vehicles in the Traffic Scenes,” IEEE Trans. ITS, vol. 7, pp. 570-582, Dec. 2006.
    [47] 吳瑞鴻、張光仁,車輛到車運動軌跡理論推導與驗證,車輛研究測試中心機電與工業管理文彙,2006.
    [48] User’s Manual, Hitachi H48C 3-Axis Accelerometer Module, 2007.
    [49] D. Gu, H. Hu, “Neural predictive control for a car-like mobile robot,” Robotics and Autonomous Systems 39, 73–86, 2002.
    [50] http://ace136.auto.fcu.edu.tw/scteach/mech/text/yin03 _32.html
    [51] http://ccy.dd.ncu.edu.tw/~chen/course/vision/ch8
    [52] http://en.wikipedia.org/wiki/Back_propagation

    下載圖示 校內:立即公開
    校外:2009-07-27公開
    QR CODE