| 研究生: |
毛傑渝 Mao, Chieh-Yu |
|---|---|
| 論文名稱: |
使用PIV研究 γ 型史特林引擎流場現象 A study on the flow phenomena in a gamma type Stirling engine using PIV |
| 指導教授: |
陳文立
Chen, Wen-Lih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | γ型史特林引擎 、CFD模擬 、PIV量測 |
| 外文關鍵詞: | Gamma type stirling engine, CFD, PIV |
| 相關次數: | 點閱:112 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,使用了一特製的γ型史特林引擎其移氣缸材質是由透明壓克力製成,藉此可觀察引擎循環中內部流場的變化,且引擎內部配有移動再生器,並用PIV(Particle Image Velocity)量測技術測量史特林引擎於一個循環中幾個時間點的速度場,其以每45º為間隔由0º開始進行一個周期循環,分別有0º、45º、90º、135º、180º、225º、270º、315º共八組相位角,而考慮到本研究之移氣缸材質,為避免高溫使移氣缸變形甚至融化,引擎溫差分別為55º及60º,轉速為150rpm及180rpm。本研究亦建立相似之史特林引擎CFD(Computational Fluid Dynamics)模型,其中各項數值模擬設置之條件與實驗設計條件相符,且比較了PIV數據與CFD模擬之速度向量,以驗證CFD模擬的準確性。研究中也計算並探討該引擎的輸出功率、熱效率以及熱傳現象,藉由流場和溫度場等數據,被用來確定影響史特林引擎性能之流動現象和傳熱機制。
本研究將史特林引擎內部之流場可視化,並與數值模擬進行比較,此研究的結果豐富了對真正的史特林引擎中物理學的基本知識,並能使未來在設計引擎中能夠將其結果納入開發設計中,以改善設計提升性能。此外,這些實驗結果可用於驗證為史特林引擎循環所開發的CFD模型。
In this study, we constructed a transparent gamma Stirling engine with a moving regenerator and measured the velocity field at several moments within a cycle using the PIV (Particle Image Velocity) technique, in addition, a CFD (Computational Fluid Dynamics) model of engine was setup. In order to validate the CFD simulation, velocity vectors from the numerical simulation and experimental data were compared. For the purposes of observing the internal flow field of the engine, the material of the displacer cylinder wall is made of acrylic. To avoid melting the displacer cylinder wall, the temperature difference was very small. The rotating speed was also low. The flow field and temperature were analyzed to capture the important flow phenomena and heat transfer mechanisms that affect the performance of the Stirling engine. The research results indicate that under the same conditions, the results show good agreement between the CFD simulation and PIV measurement. This has proven the correctness of the CFD model, so it can be used to study the flow inside the Stirling engine.
1. G. Xiao, C. Chen, B. Shi, K. Cen, and M. Ni. Experimental study on heat transfer of oscillating flow of a tubular Stirling engine heater. International Journal of Heat and Mass Transfer. 71: p. 1-7. 2014.
2. W.-L. Chen, C.-K. Chen, M.-J. Fang, and Y.-C. Yang. A numerical study on applying slot-grooved displacer cylinder to a γ-type medium-temperature-differential stirling engine. Energy. 144: p. 679-693. 2018.
3. U.R. Singh and A. Kumar. Review on solar Stirling engine: Development and performance. Thermal Science and Engineering Progress. 8: p. 244-256. 2018.
4. M.A. Brown, M.D. Levine, W. Short, and J.G. Koomey. Scenarios for a clean energy future. Energy policy. 29(14): p. 1179-1196. 2001.
5. W.-L. Chen, Y.-C. Yang, and J.L. Salazar. A CFD parametric study on the performance of a low-temperature-differential γ-type Stirling engine. Energy Conversion and Management. 106: p. 635-643. 2015.
6. A.J. Organ. The regenerator and the Stirling engine. 1997.
7. N. Chen and F. Griffin, Review of Stirling-engine mathematical models. 1983, Oak Ridge National Lab., TN (USA).
8. K. Hosotani, K. Nakatani, S. Okazaki, and K. Kamei. Development of an Acrylic Stirling Engine for Engineering Education and Simple Method for Visualizing Temperature Distributions. Journal of the Japanese Society for Experimental Mechanics. 14: p. 61-66. 2014.
9. L.J. Luviano-Ortiz, U.C. Gonzalez-Valle, and G. Hernandez-Cruz. Visualization of the flow distribution inside the piston displacement of a gamma-type stirling engine.12th International Conference on Heat Transfer. 2016.
10. N. Hassan, M. Zawawi, A.M. Al Bakri, Z. Rozainy, M. Kamaruddin, W. Nasir, M. Mazlan, and A. Irfan. A Review on Applications of Particle Image Velocimetry.IOP Conference Series: Materials Science and Engineering. 2020. IOP Publishing.
11. H.D. Huang and W.L. Chen. Development of a compact simple unpressurized Watt‐level low‐temperature‐differential Stirling engine. International Journal of Energy Research. 44(14): p. 12029-12044. 2020.
12. C.-Y. Wu, G.M. Currao, W.-L. Chen, C.-Y. Chang, B.-Y. Hu, T.-H. Wang, and Y.-C. Chen. The application of an innovative integrated Swiss-roll-combustor/Stirling-hot-end component on an unpressurized Stirling engine. Energy Conversion and Management. 249: p. 114831. 2021.
13. W.-L. Chen, K.-L. Wong, and H.-E. Chen. An experimental study on the performance of the moving regenerator for a γ-type twin power piston Stirling engine. Energy conversion and management. 77: p. 118-128. 2014.
14. PICC. AR6 Climate Change 2021: The Physical Science Basis. Available from: https://www.ipcc.ch/report/ar6/wg1/.
15. S. Brueckner, L. Miró, L.F. Cabeza, M. Pehnt, and E. Laevemann. Methods to estimate the industrial waste heat potential of regions–A categorization and literature review. Renewable and Sustainable Energy Reviews. 38: p. 164-171. 2014.
16. K. O’Rielly and J. Jeswiet. Strategies to improve industrial energy efficiency. Procedia Cirp. 15: p. 325-330. 2014.
17. M. Falchi and G. Romano. Evaluation of the performance of high-speed PIV compared to standard PIV in a turbulent jet. Experiments in fluids. 47(3): p. 509-526. 2009.
18. T. Cheng, P. Chiou, and T. Lin. Visualization of mixed convective vortex rolls in an impinging jet flow of air through a cylindrical chamber. International journal of heat and mass transfer. 45(16): p. 3357-3368. 2002.
19. S. Spring, Y. Xing, and B. Weigand. An experimental and numerical study of heat transfer from arrays of impinging jets with surface ribs. Journal of Heat Transfer. 134(8). 2012.
20. W.-L. Chen, K.-L. Wong, and Y.-F. Chang. A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a low-temperature-differential γ-type Stirling engine. International Journal of Heat and Mass Transfer. 75: p. 145-155. 2014.
21. I. Urieli and D.M. Berchowitz. Stirling cycle engine analysis. 1984.
22. Z. Li, Y. Haramura, Y. Kato, and D. Tang. Analysis of a high performance model Stirling engine with compact porous-sheets heat exchangers. Energy. 64: p. 31-43. 2014.
23. W. Emrich, Chapter 3 - Nuclear Rocket Engine Cycles, Principles of Nuclear Rocket Propulsion, W. Emrich, Editor., Butterworth-Heinemann. p. 21-30. 2016.
24. W.-L. Chen. A study on the effects of geometric parameters in a low-temperature-differential γ-type Stirling engine using CFD. International Journal of Heat and Mass Transfer. 107: p. 1002-1013. 2017.
25. F. Becker, Variational correlation and decomposition methods for particle image velocimetry. 2009.
26. J.G. Santiago, S.T. Wereley, C.D. Meinhart, D. Beebe, and R.J. Adrian. A particle image velocimetry system for microfluidics. Experiments in fluids. 25(4): p. 316-319. 1998.
27. R.C. Flagan and J.H. Seinfeld, Fundamentals of air pollution engineering. 2012: Courier Corporation.
28. C. Tropea, A.L. Yarin, and J.F. Foss, Springer handbook of experimental fluid mechanics. Vol. 1. 2007: Springer.
29. M. Raffel, C.E. Willert, and J. Kompenhans, Particle image velocimetry: a practical guide. Vol. 2. 1998: Springer.
30. R.J. Adrian. Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry. Applied optics. 25(21): p. 3855-3858. 1986.
31. Y. Dai, X. Zhang, G. Zhang, M. Cai, C. Zhou, and Z. Ni. Numerical analysis of influence of cavitation characteristics in nozzle holes of curved diesel engines. Flow Measurement and Instrumentation. 85: p. 102172. 2022.
32. I.A. Yeginbayeva, L. Granhag, and V. Chernoray. Review and historical overview of experimental facilities used in hull coating hydrodynamic tests. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 233(4): p. 1240-1259. 2019.