簡易檢索 / 詳目顯示

研究生: 陳威廷
Chen, Wei-ting
論文名稱: 低損耗微波介電系統 x(Mg0.95M2+0.05)TiO3-(1-x)(Ca0.8Sr0.2)TiO3 (M=Ni、Co、Zn)及其在無線通訊元件之應用
Low-Loss Microwave Dielectrics Using x(Mg0.95M2+0.05)TiO3-(1-x)(Ca0.8Sr0.2)TiO3 (M=Ni、Co、Zn) and Their Applications in the Wireless Communication Components
指導教授: 黃正亮
Huang, Cheng-liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 157
中文關鍵詞: 微波無線通訊陶瓷濾波器零點介質共振天線
外文關鍵詞: ceramic, microwave, wireless communication, DRA, transmission zeros, filter
相關次數: 點閱:79下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中主要介紹兩大部分,第一部份將介紹低損耗的介電材料,且試圖調整溫度飄移係數使其為零;第二部份將介紹其在被動電路之應用,且實做於不同基板上探討元件尺寸的改善。
    第一部份首先要介紹Ca0.8Sr0.2TiO3陶瓷系統之微波介電特性。由實驗中可得知Ca0.8Sr0.2TiO3在1350℃燒結4小時可得到最佳之介電特性 ~181,Q×~8300(at 9GHz), ~ +991 ppm/oC。由於此系統之 為正值,故選擇以 為負值且高介電係數及高品質因素的材料Mg0.95Ni0.05TiO3、Mg0.95Co0.05TiO3、Mg0.95Zn0.05TiO3添加,探討溫度飄移係數趨近零之最佳比例。
    第二部份首先介紹具開路殘段之平行耦合濾波器,產生兩零點在通帶兩側並有抑制二倍頻的效果,我們利用電磁模擬軟體IE3D,在濾波器中心頻率 =2.4GHz、頻寬~7%的情況下模擬. 此外,我們將濾波器實做於FR4、Al2O3及0.95MZT-0.05CST(自製)三種基板上。以更高之介電常數及品質因素使濾波器的電路尺寸及頻率響應上有較佳之改善。
    最後介紹具兩開路殘段矩形貼片天線,我們利用電磁模擬軟體HFSS,使用FR4版,在操作頻率 =1.57GHz(GPS),探討開路殘段對矩形天線的影響。接著以0.95MZT-0.05CST的bulk作一具槽孔的雙頻介質共振天線(DRA) ,滿足IEEE 802.11n/p(2.4 GHz or 5 GHz bands and 5.86-5.925 GHz)通訊協定,探討微帶天線及加上DR對其影響。

    There are two main subjects in this paper. First, we will discuss the low loss dielectric material, and try to make temperature coefficient of resonant frequency near zero. Second, there will be a discussion of passive components and improvement of circuit size in different substrates.
    First, the microwave dielectric properties of Ca0.8Sr0.2TiO3 have been investigated. The experiment results show that Ca0.8Sr0.2TiO3 has the best properties at sintering temperature 1350℃ for four hours, which could reach the best dielectric properties ~ 181, Q×f ~ 8300(at 9GHz) and ~ +991 ppm/oC. Concerning about the positive value of , we choose adding the Mg0.95Ni0.05TiO3( ~ -45 ppm/oC)、Mg0.95Co0.05TiO3( ~ -55 ppm/oC) and Mg0.95Zn0.05TiO3( ~ -40 ppm/oC) to adjust the value, then we could make temperature coefficient of resonant frequency near zero.
    Besides, with open stubs parraell-coupled lines bandpass filter were studied in second section which achieved two transmission zeros at passband edges and spurious responses supression by properly choosing the stubs locations and impedances. We simulated it by electromagnetic simulation software (IE3D) at the setting of center frequency 2.4GHz and bandwidth 7%. Also, we try to realize that the improvement of Insertion Loss and circuit size at the substitution of FR4, Al2O3 and 0.95MZT-0.05CST for the microstrip bandpass filter.
    Finally,with two open stubs as radiators microstrip patch antenna were proposed. We simulated it by electromagnetic simulation software (HFSS) at the setting of center frequency 1.57GHz for GPS.Then a dual-band dielectric resonator antenna using aperture-coupled were proposed.We used 0.95MZT-0.05CST bulk as a resonator for 5 GHz bands, and dual-band antenna well covered IEEE 802.11n/p communication protocol.

    摘要 III Abstract IIV 誌謝 VI 目 錄 VII 表 目 錄 XI 圖 目 錄 XII 第一章 緒論 19 1-1 前言 19 1-2 研究目的 20 第二章 介電材料原理................................22 2-1 陶瓷材料之微波介電特性.........................22 2-1-1 介電常數(Dielectric constant:K、 )……………………………...........................22 2-1-2 介電品質因數(Quality factor:Q):………………………………..............25 2-1-3 共振頻率之溫度係數( ):…………………………………………...............26 2-2 介電共振器(Dielectric Resonator, DR)原理.......27 2-3 鈣鈦礦之結構...................................31 2-4 鈦鐵礦結構.....................................31 2-5 燒結原理.......................................33 2-5-1 燒結的種類……………………………………………………………...33 2-5-2 陶瓷體燒結的三過程...…………………………………………………........34 第三章 微帶線及濾波器之原理........................35 3-1 濾波器的簡介...................................35 3-2 微帶線原理.....................................38 3-2-1 微帶傳輸線介紹 ……………………………………………………….........38 3-2-2 微帶線傳輸組態 ……………………………………………………….........38 3-2-3 微帶線各項參數公式計算及考量…………………………………….....................40 3-3 微帶線諧振器種類...............................49 3-4 共振器間的耦合形式.............................52 3-4-1 電場耦合……………………………………………………………….52 3-4-2 磁場耦合……………………………………………………………….55 3-4-3 混和耦合……………………………………………………………….58 3-5 Tapped Line 輸入及輸出點的設計.................61 第四章 天線原理 ...................................63 4-1 天線簡介......................................63 4-2 天線之特性參數介紹 ...........................63 4-2-1天線輸入阻抗(Input Impendance)與電壓駐波(VSWR) ...........................................63 4-2-2天線增益(Gain)與指向性(Directivity)......64 4-2-3天線輻射效率(Antenna Radiation Efficiency)66 4-2-4天線的極化(Polarization)................67 4-3 微帶天線原理及介紹 ............................68 4-3-1微帶天線概述(Microstrip Antenna ).........68 4-3-2空腔模型理論..............................69 4-3-3共平面波導饋入式天線......................71 4-3-4介質共振天線..............................73 第五章 實驗程序與量測方法...........................74 5-1 微波介電材料的製備..............................74 5-2 微波介電材料的特性分析與量測....................76 5-2-1 X-Ray(XRD)分析……………………………………………………..........76 5-2-2 掃瞄式電子顯微鏡(SEM)分析……………………………………......................76 5-2-3 密度之量測……………………………………………………………....76 5-2-4 微波介電特性之量測 …………………………………………………..............76 5-3 濾波器之製作與量測..............................83 5-3-1 濾波器設計規格 ………………………………………………………..........83 5-3-2 濾波器製作……………………………………………………………....84 5-3-3 濾波器量測 ……………………………………………………………......85 5-4 天線之製作與量測................................85 5-4-1 天線設計規格…………………………………………………………......85 5-4-2無反射實驗室……………………………………………………………....86 第六章 實驗結果與討論...............................88 6-1 x(Mg0.95Ni0.05)TiO3 -(1-x)(Ca0.8Sr0.2)TiO3之微波特性探討..................................................88 6-1-1 xMNT-(1-x)CST系統之XRD相組成分析……………………………............................88 6-1-2 xMNT-(1-x)CST系統之SEM微結構分析……………………………............................89 6-1-3 xMNT-(1-x)CST系統之密度分析………………………………………....................89 6-1-4 xMNT-(1-x)CST系統之介電特性分析………………………………..........................89 6-2 x(Mg0.95Co0.05)TiO3 -(1-x)(Ca0.8Sr0.2)TiO3之微波特性探討..................................................101 6-2-1 xMCT-(1-x)CST系統之XRD相組成析…..…………………………..........................101 6-2-2 xMCT-(1-x)CST系統之SEM微結構分析……………………………............................102 6-2-3 xMCT-(1-x)CST系統之密度分析……………………………………......................102 6-2-3 xMCT-(1-x)CST系統之介電特性分析………………………………..........................102 6-3 x(Mg0.95Zn0.05)TiO3 -(1-x)(Ca0.2Sr0.8)TiO3之微波特性探討...................................................115 6-3-1 xMZT-(1-x)CST系統之XRD相組成分析…………………………….............................115 6-3-2 xMZT-(1-x)CST系統之SEM微結構分析…………………………….............................116 6-3-3 xMZT-(1-x)CST系統之密度分析…………………………………….......................116 6-3-4 xMZT-(1-x)CST系統之介電特性分析………………………………............................116 6-4 濾波器響應........................................129 6-4-1 邊緣效應………………………………………………………………....131 6-4-2 開路殘段分析…………………………………………………………........132 6-4-3 Tapped line 分析………………………………………………………..........133 6-4-3 等效電路分析…………………………………………………………........135 6-5 濾波器之特性與探討................................135 6-5-1 FR4………………………………………………………………….135 6-5-2 Al2O3基板……………………………………………………………….....137 6-5-2 0.95MZT-0.05CST基板……………………………………………….................138 6-6 二倍頻抑制……………………………………………………………….....140 6-7 微帶天線之特性與探討...............................141 6-7-1 電路分析……………………………………………………………….....142 6-7-2 結果討論……………………………………………………………….....144 6-8 雙頻介質共振天線之特性與探討.......................146 6-8-1 電路分析………………………………………………………………......147 6-8-2 結果討論………………………………………………………………......144 第七章 結論…...........................................153 參考文獻................................................154

    [1] 翁敏航, 射頻被動元件設計, 東華書局, 95年9月
    [2] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoonand H.-J Kim, “Microwave Dielectric Characteristics of Ilmenite-TypeTitanates with High Q Values”, J. Appl. phys., vol.33, pp.5466-5470,1994.
    [3] David M. Pozar “Microwave Engineering”, Addison-Wesley, 1998.
    [4] D. Kajfez , “ Computed model field distribution for isolated dielectric resonators , ” IEEE. Trans. Microwave Theory Tech. , vol. MTT-32, pp. 1609-1616, Dec.1984.
    [5] D. Kajfez,“ Basic principle give understanding of dielectric waveguides and resonators , ” Microwave SysTFm News, vol. 13, pp. 152-161, 1983
    [6] D. Kajfez, and P. Guillon, Dielectric resonators. , New York: Artech House, 1989.
    [7] 吳朗, 電工材料, 滄海書局, 87年2月
    [8] Chun-Te Lee, Yi-Chang Lin, Chi-Yuen Huang, Che-Yi Su, and Ching-Li Hu, “Cation Ordering and Dielectric Characteristics in Barium Zinc Niobate,” J. Am. Ceram. Soc., 90 [2], 483-489 (2007).
    [9] Kingery, Bowen, Uhlmann , 陳皇鈞譯,陶瓷材料概論, 曉園出版社.
    [10] W.J.Huppmann and G.Petzow “The Elementary Mechanisms of Liquid Sintering”, Sintering Processes, Plenum Press, pp. 189-202, 1979.
    [11] R.L. Geiger, P.E. Allen, N.R. Strader, “VLSI Design Techniques for Analog and Digital Circuits”, McGraw-Hill, pp. 674-685, 1990.
    [12] K. C. Gupta , R. Garg, I. Bahl , and E Bhartis , “Microstrip Lines and Slotlines” , Second Edition, Artech House, Boston, 1996.
    [13] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
    [14] G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave Filters Impedance- Matching Networks and Coupling Structures”., New York: McGraw-Hill, 1980.
    [15] V. Nalbandian, and W. Steenart, “Discontinunity in Symmetric Striplines Due to Impedance Step and Their Compensations,” IEEE Trans. Microwave Theory Te-ch., vol. MTT-20, pp. 573-578, Sep. 1980.
    [16] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
    [17] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
    [18] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications: Wiley-Interscience, 2001.
    [19] J. Helszajn, “Microwave Engineering: Passive, Active, and Non-reciprocal Circuits,” McGraw-Hill, 1992.
    [20] J. S. Wong, "Microstrip Tapped-Line Filter Design," Microwave Theory and Techniques”, IEEE Transactions on, vol. 27, pp. 44-50, 1979.
    [21] K. C. Gupta and M. D. Abouzahra, Analysis and Design of Planar Microwave Components, ISBN 0-7803-0437-3, Chap. 11, 1994.
    [22] G. A. Deschamps, Microstrip Microwave Antennas, presented at the 3rd. USAF Symp. on Antennas, 1953.
    [23] 白光弘,《天線原理及應用》,文明,台北,1992。
    [24] C. P. Wen, IEEE Trans. Microwave Theory Tech. Vol. 17, pp. 1087-1090, Dec, 1969.
    [25] 翁敏航,《射頻被動元件設計》,東華,台北,2006。
    [26] A. Petosa, A. Ittipibon, Y. M. MAntar, D.Roscoe,and M.Cuhaci,” Recent Advances in Dielectric-Resonator Antenna Technology,” IEEE Antennas and Propagation Magazine, Vol. 40, No. 3, June 1998

    [27] M.S.Al Salameh,Yahia M.M.Antar, and Guy Sguin,” Coplanar-Waveguide-Fed Slot-Coupled Rectangular Dielectric Resonator Antenna” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 50, NO. 10, OCTOBER 2002
    [28] D.Kajfez, “Computed Modal Field Distribution for Isolated Dielectric Resonators,” IEEE. Trans. MTT, MTT-32, 1609-1616 (1984).
    [29] D. Kajfez, “Basic principle give understanding of Dielectric Wave-guides and Resonators,” Microwave System News, 13, 152-161 (1983).
    [30] D. Kajfez and P. Guillon, Dielectric Resontors, Artech House, Dedham, Mass. (1979).
    [31] Y. Kobayashi, and S.Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. MicrowaveTheory Tech., MTT-28, 1077-1085, 1980.
    [32] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range,” IEEE Trans. MTT, vol. MTTS, pp. 402-410, 1960.
    [33] George L.Matthaei” Design of Parallel-Coupled Resonator Filters,”IEEE microwave magazine, October 2007
    [34] S.B.Cohn, “Parallel-coupled transmission-line-resonator filters,”IRE Trans. Microw. Theory Tech., vol. MTT-6, no. 4, pp. 233–231, Apr. 1958
    [35] K. Ma, K. C. B. Liang, R. M. Jayasuriya, and K. S. Yeo,” A Wideband and High Rejection Multimode Bandpass Filter Using Stub Perturbation,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS
    [36] J.R. Lee, J.H. Cho, and S. W. Yun,” New Compact Bandpass Filter Using Microstrip λ/4 Resonators with Open Stub Inverter,” IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 10, NO. 12, DECEMBER 2000
    [37] K.C. Yoon and J.C. Lee” DESIGN OF A 5.8 GHZ NARROW BAND-PASS FILTER WITH SECOND HARMONIC SUPPRESSION USING THE OPEN STUBS,” MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, July 2008
    [38] H.M. Lee, C.M. Tsai,” Improved Coupled-Microstrip Filter Design Using Effective Even-Mode and Odd-Mode Characteristic Impedances,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.53, NO.9, SEPTEMBER 2005
    [39] A.Balanis, Antenna Theory,2005 Wiley
    [40] K.M.Luk, and K.W.Leung, Dielectric Resonator Antennas, Hertfordshire, England, Research Studies Press LTD. 2003
    [41] Daniel Jiang, Luca Delgrossi “IEEE 802.11p: Towards an International Standard for Wireless Access in Vehicular Environments” 2008 IEEE
    [42] Hua-Ming Chen, Senior Member, IEEE, Yang-Kai Wang, Yi-Fang Lin, Shih-Chieh Lin, Shan-Cheng Pan,” A Compact Dual-Band Dielectric ResonatorAntenna Using a Parasitic Slot” IEEE Antenna and propagation letters Volume 8, 2009 Page(s):173 - 176

    下載圖示 校內:立即公開
    校外:2009-07-17公開
    QR CODE