簡易檢索 / 詳目顯示

研究生: 鄭國村
Cheng, Kuo-Tsun
論文名稱: 應用於生醫頻帶之無線1-V低功率基礎體溫生理監測系統
Wireless 1-V Low-Power Basal-Body-Temperature Monitoring System in Med-Radio Band
指導教授: 楊慶隆
Yang, Chin-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 110
中文關鍵詞: 生醫頻帶基礎體溫低侵入式微型假牙天線轉導式電容濾波器參考電壓電路具溫度補償振盪器
外文關鍵詞: Med-Radio Band, Basal Body Temperature, Low Implantable, Fractal Dental Antenna, Gm-C Filter, Voltage Control Oscillator with temperature compensation, Bandgap Reference
相關次數: 點閱:100下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一應用於生醫頻帶之無線1-V低功率基礎體溫生理監測系統,並搭配一新穎低侵入式微型假牙天線來形成醫療雲端照護。其晶片內部電路包含:取樣放大電路、轉導式電容濾波器、具溫度補償振盪器及能隙參考電壓電路。本論文使用溫度電阻來感測基礎體溫生理訊號,取樣放大電路會把溫度電阻變化放大成電壓變化,並利用轉導式低通濾波器濾除雜訊,將乾淨的電壓訊號給予振盪器來作頻率調變,再使用低侵入式三維分形微型假牙天線將頻率訊號送出,來完成一無線溫度感測生醫裝置發射端。
    本晶片使用TSMC 0.18μm CMOS 1P6M 來製作晶片並進行量測,總面積為0.9mm2。取樣放大電路功耗為10.7 μW;轉導式低通濾波器,功耗消耗為300μW,截止頻率為4MHz;具有溫度補償之振盪器,輸出頻率401 MHz ~ 406 MHz,對溫度變化為10.1 ppm/oC,功耗為661 μW;能隙參考電壓輸出電壓為1 V,對電壓變化為0.52 %/V,對溫度變化為2 ppm/oC,功耗為131.6 μW;在基礎體溫方面,有線量測最大誤差範圍為±0.12%,平均誤差為±0.01%,整個系統平均誤差±0.019℃;無線量測最大誤差範圍為±0.15%,平均誤差為±0.05%,整個系統平均誤差±0.034℃,達到基礎體溫解析度須達到0.1 ℃以下的規格需求。

    This paper proposes a wireless 1-V low-power basal-body-temperature monitoring system in Med-Radio Band, and using a novel low-implantable fractal dental antenna for cloud healthcare. The chip circuit includes of sample amplifier, gm-c filter, the voltage control oscillator with temperature consumption and bandgap reference. The paper uses temperature resistance to sensing basal-body-temperature signal. The sampling amplifier will amplifies the signal and converts into voltage signal. The voltage signal will filter out the noise by gm-c filter and it will be gived oscillator for frequency modulation. Then, the radio wave can be further propagated by a low-implantable fractal dental antenna, to complete the transmitter of a wireless biomedical temperature-sensing device.
    The chip is fabricated in a standard 0.18-μm CMOS process, and the chip area of 0.9 mm2. The sampling amplifier power consumption is 10.7 μW. The Gm-C filter power consumption is 300μW and cutoff frequency of 4 MHz. The VCO with temperature consumption output frequency range is 401 MHz ~ 406 MHz, the temperature variation coefficient is 10 ppm/oC and power consumption is 661 μW. The bandgap reference circuit output voltage is 1 V, the voltage variation coefficient is 0.52%/V, the temperature variation coefficient is 2 ppm/oC and power consumption is 131.6 μW. In the basal body temperature measurement, the maximum error range is ± 0.12%, the average error of ±0.01% and The system average error ± 0.019 ℃ by wired measuring. The maximum error range is ± 0.15%, the average error of ±0.05% and The system average error ± 0.034 ℃ by wireless measuring. The system satisfies the BBT resolution requirement of 0.1 ℃.

    誌謝....................iv 目錄....................v 表目錄....................ix 圖目錄....................x 第一章 緒論....................1 1.1 遠距離居家照護的研究背景與動機....................1 1.2 低侵入式生醫裝置介紹....................2 1.3 生醫裝置系統架構介紹....................5 1.4 基礎體溫介紹....................8 1.5 論文架構....................9 第二章 生理訊號取樣放大電路與濾波電路....................11 2.1溫度取樣電路....................11 2.1.1人體生理訊號....................12 2.1.2電阻變化型感測器轉換電路....................13 2.1.3轉換電路與MEMS結合應用....................15 2.1.4運算放大器架構與分析....................16 2.2濾波器基本理論....................18 2.2.1濾波器的特性與規格....................19 2.2.2 CMOS濾波器架構種類....................20 2.2.3 CMOS濾波器性能比較與取捨....................25 2.3轉導式電容濾波器相關技術分析....................25 2.3.1 OTA之基本架構....................25 2.3.2降低轉導值方法與分析....................26 2.3.3低轉導值低功耗之OTA架構....................28 2.3.4二階OTA-C低通濾波器設計....................29 2.3.5極零點位置分析....................31 2.4雜訊分析與考量....................32 2.4.1熱雜訊 (Thermal Noise)....................32 2.4.2閃爍雜訊 (Flicker Noise)....................33 2.4.3截波穩定技術 (Chopper Stabilization Technique)....................34 2.4.4總諧波失真 (Total Harmonic Distortion)...............35 2.5 取樣放大器及轉導式濾波器模擬結果....................36 2.5.1二階運算放大器模擬結果....................36 2.5.2取樣放大電路模擬與規格....................38 2.5.3轉導放大器模擬與規格....................39 2.5.4轉導低通濾波器模擬與規格....................40 2.6 結果與討論....................43 第三章 參考電壓電路與壓控振盪器....................44 3.1參考電壓電路基本理論....................44 3.1.1參考電壓原理....................45 3.1.2正溫度係數....................46 3.1.3負溫度係數....................46 3.2能隙參考電壓電路設計與分析....................47 3.2.1典型能隙參考電壓電路....................47 3.2.2低電壓能隙參考電壓電路....................50 3.2.3偏壓電路與啟動電路....................51 3.3振盪器基本理論....................52 3.3.1振盪器振盪原理....................52 3.3.2電容電感諧振振盪器 ( LC-Tank Oscillator )...........53 3.3.3環型振盪器 ( Ring Oscillator )....................55 3.3.4振盪器優缺點比較....................55 3.3.5重要指標參數....................56 3.4 具有溫度補償且應用於生醫頻率之壓控振盪器....................60 3.4.1生醫頻帶壓控振盪器取捨....................60 3.4.2溫度與壓控振盪器關係分析....................61 3.4.3 CMOS與溫度關係分析....................63 3.4.4溫度補償之電流源電路....................64 3.5參考電壓電路與具有溫度補償振盪器之模擬結果....................66 3.5.1低電壓能隙參考電壓電路模擬與規格....................66 3.5.2溫度補償之環形振盪器電路模擬與規格....................67 3.6結果與討論....................70 第四章 基礎體溫生醫晶片量測結果....................71 4.1 晶片佈局與量測考量....................71 4.1.1晶片技巧....................71 4.1.2晶片量測考量....................74 4.2 晶片量測方法與架設....................75 4.3 各電路區塊量測結果....................76 4.3.1取樣放大電路量測結果....................76 4.3.2轉導式低通濾波器量測結果....................77 4.3.3應用於生醫頻率之環形壓控振盪器量測結果....................79 4.4 基礎體溫晶片系統量測....................82 4.4.1基礎體溫系統有線量測結果....................83 4.4.2基礎體溫系統無線量測結果....................85 第五章 結論與未來發展....................87 5.1 結論....................87 5.2 未來發展....................88 5.2.1基礎體溫系統晶片改善....................88 5.2.2生醫植入量測與安全性....................89 參考文獻....................90

    [1] Available: http://www.moi.gov.tw/stat/news_content.aspx?sn=3779
    [2] Available: http://www.cepd.gov.tw/dn.aspx?uid=11723
    [3] The National Association for Home Care & Hospice, “Basic statistics about home care,“ Washington, 2008.
    [4] 郭文娟,「非侵入式生醫斷層影像簡介,物理雙月刊,2006年8月,廿八卷四期。
    [5] Available: http://www.fda.gov/default.htm
    [6] S.H. Chen and C.L. Yang, ”Implantable fractal dental antennas for low invasive biomedical devices,” in Antennas and Propagation Society International Symposium (APSURSI), 2010 IEEE, 2010, pp. 1-4.
    [7] J.-J. Luo, S.-J.Huang and C.-L. Yang, “Portable power-saving blood coagulation detection devices for remote health care systems”, in Biomedical Engineering Society Annual Symposium. Dec. 2009.
    [8] Available: http://www.delphiconsulting.com/FCC-06-103A1.pdf
    [9] 陳盛豪,藉ESL輔助設計之無線低侵入式植入生理信號監測系統,碩士論文,國立成功大學,台南,2011。
    [10] Available: http://myhospital.pixnet.net/blog/post/26730972
    [11] Available: http://www.e-stork.com.tw/viewArticle.do?id=4317
    [12] Available: http://www.slideshare.net/daye591/ss-12747213
    [13] 松井邦彥編著,OP放大器應用技巧100例─最佳選擇與靈活應用,北京東方科技圖文有限公司,北京,2006。
    [14] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd edition, Oxford University Press, 2002.
    [15] I. Voiculescu , M. E. Zaghloul , R. A. McGill , E. J. Houser and G. K. Fedder, “Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons”, IEEE Sens. J., vol. 5, no. 4, pp.641 -647, 2005.
    [16] Steve Winder, Analog and Digital Filter Design, 2nd Newnes, 2002.
    [17] J. S. Hong and M.J. Lancaster, Microtrip Filter for RF/Microwave Application, John Wiley, New York, 2001.
    [18] A. C. Carusone and D. A. Johns, “A 5th order Gm-C filter in 0.25um CMOS with digitally programmable poles and zeros,” IEEE Int. Circuits and Systems Symposium, vol.4, pp.635-638, 2002.
    [19] J. Lee, K. Hayatleh, F.J. Lidgey and J. Drew, “Tuneable linear transconductance cell for Gm-C filter applications,” Proc. IEEE ISCAS 2002, IV 253-256, Phoenix, Arizona, USA, May 2002.
    [20]K. Hirano and S. Nishimura "Active RC filters containing periodically operated switches", IEEE Trans. Circuit Theory, vol. CT-19, 1972.
    [21] M. Bialko and R.W. Newcomb, “Generation of all finite linear circuits using the integrated DVCCS,” in Proc. IEEE Trans on Circuit Theory, Nov. 1971, pp. 733-736.
    [22] R. Schaumann, and M. E. Van Valkenburg, Design of Analog Filter. New York: Oxford, 2000.
    [23] E. Vittoz and J. Fellrath, “CMOS analog integrated circuits based on weak inversion operation,”IEEE J. Solid-State Circuits, vol. SC-12, pp.224-231, June 1977.
    [24] A. Veeravalli, E. S. Sinencio and J. S. Martinez, “Transconductance amplifier structure with very small transconductances: a comparative design approach” IEEE J. Solid-State Circuits, vol. 37, pp.770-775, Jun. 2002.
    [25] S. Koziel and S. Szczepanski, “Design of highly linear tunable cmos ota for continuous-time filters,” IEEE Trans. Circuits Syst. II, vol. 49,pp.110-122, Feb. 2002.
    [26] C.-M. Chang, and S.-K. Pai, “Universal current-mode ota-c biquad with the minimum components”, IEEE Trans. Circuits Syst. I, vol. 47, No. 8, 2000, pp. 1235-1238.
    [27] D. A. Johns and K. Martin, “Analog integrated circuit design,” New York: John Wiley and Sons Inc., 1997.
    [28] C.C. ENZ and G.C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.
    [29] J. J. Chen, F. C. Yang, C. M. Kung, B. P. Lai, and Y. S. Hwang, “A capacitor-free fast-transient-response LDO with dual-loop controlled paths,” in proc. Asian Solid-State Circuits Conference, Nov. 2007, pp. 364-367.
    [30] Behzad Razavi, Design of Analog CMOS Integrated Circuit. McGraw-Hill, 2001.
    [31] H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, and K. Sakui, “A CMOS bandgap reference circuit with sub-1-V operation”, IEEE J. Solid-State Circuits, vol. 34, pp.670 -674, 1999.
    [32] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” in Custom Integrated Circuits Conference, 2000. CICC. Proceedings of the IEEE 2000, 2000, pp. 569-572.
    [33] E. Hegazi, H. Sjoland, and A. Abidi, “A filtering technique to lower oscillator phase noise,” in Solid-State Circuits Conference, 2001. Digest of Technical Papers. ISSCC. 2001 IEEE International, 2001, pp. 364-365, 465.
    [34] Inder Bahl and Prakash Bhartia, Microwave Solid State Circuit Design, John Wiley & Sons, pp.465-466, 1998.
    [35] A. Veeravalli, E. Sánchez-Sinencio, and J. Silva-Martínez, “Transconductance amplifier structures with very small transconductances: A comparative design approach,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 770–775, Jun. 2002.
    [36] C. D. Salthouse and R. Sarpeshkar, “A practical micropower programmable bandpass filter for use in bionic ears,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 63–70, Jan. 2003.
    [37] E. Rodriguez-Villegas, A. Yúfera, and A. Rueda, “A 1.25-V micropower Gm-C filter based on FGMOS transistors operating in weak inversion,”IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 100–111, Jan. 2004.
    [38] S. Y. Lee and C. J. Cheng, “Systematic design and modeling of a OTA-C filter for portable ECG detection,” IEEE Trans. Biomedical circuits and systems, vol 3, pp.53-64, Feb.2009.
    [39] M. H. Maghami and A. M. Sodagar, “Fully-integrated, large-time-constant, low-pass, Gm-C filter based on current conveyors” in the 18th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 281 - 284, Dec. 2011.
    [40] S. A. Hasan, S. Hall and J. S. Marsland. “A wide linear range OTA-C filter for bionic ears,” in the 3rd Computer Science and Electronic Engineering Conference
    92
    (CEEC), pp. 19 - 22, July 2011.
    [41] R. Farjad-Rad, W. Dally, Ng Hiol-Tiaq, R. Senthinathan, M.-J.E. Lee, R. Rathi and J. Poulton, “A low-power multiplying DLL for low-jitter multigigahertz clock generation in highly integrated digital chips,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1804–1812, Dec. 2002.
    [42] S. Gierkink, “An 800 MHz –122 dBc/Hz-at-200 kHz clock multiplier based on a combination of PLL and recirculating DLL,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 454–455.
    [43] Reid R. Harrison, Paul T. Watkins, Ryan J. Kier, Robert O. Lovejoy, Daniel J. Black, Bradley Greger, and Florian Solzbacher, “A low power integrated circuit for a wireless 100-electrode neural recording system”, IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 123- 133, January 2007.
    [44] X. Zhang and A. B. Apsel, “A low-power, process and temperature compensated ring oscillator with addition-based current source”, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 5, pp.868 -878, 2011.
    [45] Reid R. Harrison, Paul T. Watkins, Ryan J. Kier, Robert O. Lovejoy, Daniel J. Black, Bradley Greger, and Florian Solzbacher, “A lowpower integrated circuit for a wireless 100-electrode neural recording system”, IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 123- 133, January 2007.
    [46] K. Sundaresan, K. C. Brouse, K. U-Yen, F. Ayazi, and P. E. Allen, “A 7-MHz process, temperature and supply compensated clock oscillator in 0.25 um CMOS,” in Proc. 2003 Int. Symp. Circuits and Systems (ISCAS’03), 2003, vol. 1, pp. I-693–I-696.
    [47] R. Vijayaraghavan, S. K. Islam, M. R. Haider, and L. Zuo, “Wideband injection-locked frequency divider based on a process and temperature compensated ring oscillator,” IET Circuits, Devices & Syst., vol. 3, pp. 259–267, 2009.
    [48] G. De Vita, F. Marraccini, and G. Iannaccone, “Low-voltage low-power CMOS oscillator with low temperature and process sensitivity,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS 2007), 2007, pp. 2152–2155.
    [49] K. R. Lakshmikumar, V. Mukundagiri, and S. L. J. Gierkink, “A process and temperature compensated two-stage ring oscillator,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC’07), 2007, pp. 691–694.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE