| 研究生: |
鄭國村 Cheng, Kuo-Tsun |
|---|---|
| 論文名稱: |
應用於生醫頻帶之無線1-V低功率基礎體溫生理監測系統 Wireless 1-V Low-Power Basal-Body-Temperature Monitoring System in Med-Radio Band |
| 指導教授: |
楊慶隆
Yang, Chin-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 生醫頻帶 、基礎體溫 、低侵入式 、微型假牙天線 、轉導式電容濾波器 、參考電壓電路 、具溫度補償振盪器 |
| 外文關鍵詞: | Med-Radio Band, Basal Body Temperature, Low Implantable, Fractal Dental Antenna, Gm-C Filter, Voltage Control Oscillator with temperature compensation, Bandgap Reference |
| 相關次數: | 點閱:100 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一應用於生醫頻帶之無線1-V低功率基礎體溫生理監測系統,並搭配一新穎低侵入式微型假牙天線來形成醫療雲端照護。其晶片內部電路包含:取樣放大電路、轉導式電容濾波器、具溫度補償振盪器及能隙參考電壓電路。本論文使用溫度電阻來感測基礎體溫生理訊號,取樣放大電路會把溫度電阻變化放大成電壓變化,並利用轉導式低通濾波器濾除雜訊,將乾淨的電壓訊號給予振盪器來作頻率調變,再使用低侵入式三維分形微型假牙天線將頻率訊號送出,來完成一無線溫度感測生醫裝置發射端。
本晶片使用TSMC 0.18μm CMOS 1P6M 來製作晶片並進行量測,總面積為0.9mm2。取樣放大電路功耗為10.7 μW;轉導式低通濾波器,功耗消耗為300μW,截止頻率為4MHz;具有溫度補償之振盪器,輸出頻率401 MHz ~ 406 MHz,對溫度變化為10.1 ppm/oC,功耗為661 μW;能隙參考電壓輸出電壓為1 V,對電壓變化為0.52 %/V,對溫度變化為2 ppm/oC,功耗為131.6 μW;在基礎體溫方面,有線量測最大誤差範圍為±0.12%,平均誤差為±0.01%,整個系統平均誤差±0.019℃;無線量測最大誤差範圍為±0.15%,平均誤差為±0.05%,整個系統平均誤差±0.034℃,達到基礎體溫解析度須達到0.1 ℃以下的規格需求。
This paper proposes a wireless 1-V low-power basal-body-temperature monitoring system in Med-Radio Band, and using a novel low-implantable fractal dental antenna for cloud healthcare. The chip circuit includes of sample amplifier, gm-c filter, the voltage control oscillator with temperature consumption and bandgap reference. The paper uses temperature resistance to sensing basal-body-temperature signal. The sampling amplifier will amplifies the signal and converts into voltage signal. The voltage signal will filter out the noise by gm-c filter and it will be gived oscillator for frequency modulation. Then, the radio wave can be further propagated by a low-implantable fractal dental antenna, to complete the transmitter of a wireless biomedical temperature-sensing device.
The chip is fabricated in a standard 0.18-μm CMOS process, and the chip area of 0.9 mm2. The sampling amplifier power consumption is 10.7 μW. The Gm-C filter power consumption is 300μW and cutoff frequency of 4 MHz. The VCO with temperature consumption output frequency range is 401 MHz ~ 406 MHz, the temperature variation coefficient is 10 ppm/oC and power consumption is 661 μW. The bandgap reference circuit output voltage is 1 V, the voltage variation coefficient is 0.52%/V, the temperature variation coefficient is 2 ppm/oC and power consumption is 131.6 μW. In the basal body temperature measurement, the maximum error range is ± 0.12%, the average error of ±0.01% and The system average error ± 0.019 ℃ by wired measuring. The maximum error range is ± 0.15%, the average error of ±0.05% and The system average error ± 0.034 ℃ by wireless measuring. The system satisfies the BBT resolution requirement of 0.1 ℃.
[1] Available: http://www.moi.gov.tw/stat/news_content.aspx?sn=3779
[2] Available: http://www.cepd.gov.tw/dn.aspx?uid=11723
[3] The National Association for Home Care & Hospice, “Basic statistics about home care,“ Washington, 2008.
[4] 郭文娟,「非侵入式生醫斷層影像簡介,物理雙月刊,2006年8月,廿八卷四期。
[5] Available: http://www.fda.gov/default.htm
[6] S.H. Chen and C.L. Yang, ”Implantable fractal dental antennas for low invasive biomedical devices,” in Antennas and Propagation Society International Symposium (APSURSI), 2010 IEEE, 2010, pp. 1-4.
[7] J.-J. Luo, S.-J.Huang and C.-L. Yang, “Portable power-saving blood coagulation detection devices for remote health care systems”, in Biomedical Engineering Society Annual Symposium. Dec. 2009.
[8] Available: http://www.delphiconsulting.com/FCC-06-103A1.pdf
[9] 陳盛豪,藉ESL輔助設計之無線低侵入式植入生理信號監測系統,碩士論文,國立成功大學,台南,2011。
[10] Available: http://myhospital.pixnet.net/blog/post/26730972
[11] Available: http://www.e-stork.com.tw/viewArticle.do?id=4317
[12] Available: http://www.slideshare.net/daye591/ss-12747213
[13] 松井邦彥編著,OP放大器應用技巧100例─最佳選擇與靈活應用,北京東方科技圖文有限公司,北京,2006。
[14] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd edition, Oxford University Press, 2002.
[15] I. Voiculescu , M. E. Zaghloul , R. A. McGill , E. J. Houser and G. K. Fedder, “Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons”, IEEE Sens. J., vol. 5, no. 4, pp.641 -647, 2005.
[16] Steve Winder, Analog and Digital Filter Design, 2nd Newnes, 2002.
[17] J. S. Hong and M.J. Lancaster, Microtrip Filter for RF/Microwave Application, John Wiley, New York, 2001.
[18] A. C. Carusone and D. A. Johns, “A 5th order Gm-C filter in 0.25um CMOS with digitally programmable poles and zeros,” IEEE Int. Circuits and Systems Symposium, vol.4, pp.635-638, 2002.
[19] J. Lee, K. Hayatleh, F.J. Lidgey and J. Drew, “Tuneable linear transconductance cell for Gm-C filter applications,” Proc. IEEE ISCAS 2002, IV 253-256, Phoenix, Arizona, USA, May 2002.
[20]K. Hirano and S. Nishimura "Active RC filters containing periodically operated switches", IEEE Trans. Circuit Theory, vol. CT-19, 1972.
[21] M. Bialko and R.W. Newcomb, “Generation of all finite linear circuits using the integrated DVCCS,” in Proc. IEEE Trans on Circuit Theory, Nov. 1971, pp. 733-736.
[22] R. Schaumann, and M. E. Van Valkenburg, Design of Analog Filter. New York: Oxford, 2000.
[23] E. Vittoz and J. Fellrath, “CMOS analog integrated circuits based on weak inversion operation,”IEEE J. Solid-State Circuits, vol. SC-12, pp.224-231, June 1977.
[24] A. Veeravalli, E. S. Sinencio and J. S. Martinez, “Transconductance amplifier structure with very small transconductances: a comparative design approach” IEEE J. Solid-State Circuits, vol. 37, pp.770-775, Jun. 2002.
[25] S. Koziel and S. Szczepanski, “Design of highly linear tunable cmos ota for continuous-time filters,” IEEE Trans. Circuits Syst. II, vol. 49,pp.110-122, Feb. 2002.
[26] C.-M. Chang, and S.-K. Pai, “Universal current-mode ota-c biquad with the minimum components”, IEEE Trans. Circuits Syst. I, vol. 47, No. 8, 2000, pp. 1235-1238.
[27] D. A. Johns and K. Martin, “Analog integrated circuit design,” New York: John Wiley and Sons Inc., 1997.
[28] C.C. ENZ and G.C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.
[29] J. J. Chen, F. C. Yang, C. M. Kung, B. P. Lai, and Y. S. Hwang, “A capacitor-free fast-transient-response LDO with dual-loop controlled paths,” in proc. Asian Solid-State Circuits Conference, Nov. 2007, pp. 364-367.
[30] Behzad Razavi, Design of Analog CMOS Integrated Circuit. McGraw-Hill, 2001.
[31] H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, and K. Sakui, “A CMOS bandgap reference circuit with sub-1-V operation”, IEEE J. Solid-State Circuits, vol. 34, pp.670 -674, 1999.
[32] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” in Custom Integrated Circuits Conference, 2000. CICC. Proceedings of the IEEE 2000, 2000, pp. 569-572.
[33] E. Hegazi, H. Sjoland, and A. Abidi, “A filtering technique to lower oscillator phase noise,” in Solid-State Circuits Conference, 2001. Digest of Technical Papers. ISSCC. 2001 IEEE International, 2001, pp. 364-365, 465.
[34] Inder Bahl and Prakash Bhartia, Microwave Solid State Circuit Design, John Wiley & Sons, pp.465-466, 1998.
[35] A. Veeravalli, E. Sánchez-Sinencio, and J. Silva-Martínez, “Transconductance amplifier structures with very small transconductances: A comparative design approach,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 770–775, Jun. 2002.
[36] C. D. Salthouse and R. Sarpeshkar, “A practical micropower programmable bandpass filter for use in bionic ears,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 63–70, Jan. 2003.
[37] E. Rodriguez-Villegas, A. Yúfera, and A. Rueda, “A 1.25-V micropower Gm-C filter based on FGMOS transistors operating in weak inversion,”IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 100–111, Jan. 2004.
[38] S. Y. Lee and C. J. Cheng, “Systematic design and modeling of a OTA-C filter for portable ECG detection,” IEEE Trans. Biomedical circuits and systems, vol 3, pp.53-64, Feb.2009.
[39] M. H. Maghami and A. M. Sodagar, “Fully-integrated, large-time-constant, low-pass, Gm-C filter based on current conveyors” in the 18th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 281 - 284, Dec. 2011.
[40] S. A. Hasan, S. Hall and J. S. Marsland. “A wide linear range OTA-C filter for bionic ears,” in the 3rd Computer Science and Electronic Engineering Conference
92
(CEEC), pp. 19 - 22, July 2011.
[41] R. Farjad-Rad, W. Dally, Ng Hiol-Tiaq, R. Senthinathan, M.-J.E. Lee, R. Rathi and J. Poulton, “A low-power multiplying DLL for low-jitter multigigahertz clock generation in highly integrated digital chips,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1804–1812, Dec. 2002.
[42] S. Gierkink, “An 800 MHz –122 dBc/Hz-at-200 kHz clock multiplier based on a combination of PLL and recirculating DLL,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 454–455.
[43] Reid R. Harrison, Paul T. Watkins, Ryan J. Kier, Robert O. Lovejoy, Daniel J. Black, Bradley Greger, and Florian Solzbacher, “A low power integrated circuit for a wireless 100-electrode neural recording system”, IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 123- 133, January 2007.
[44] X. Zhang and A. B. Apsel, “A low-power, process and temperature compensated ring oscillator with addition-based current source”, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 5, pp.868 -878, 2011.
[45] Reid R. Harrison, Paul T. Watkins, Ryan J. Kier, Robert O. Lovejoy, Daniel J. Black, Bradley Greger, and Florian Solzbacher, “A lowpower integrated circuit for a wireless 100-electrode neural recording system”, IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 123- 133, January 2007.
[46] K. Sundaresan, K. C. Brouse, K. U-Yen, F. Ayazi, and P. E. Allen, “A 7-MHz process, temperature and supply compensated clock oscillator in 0.25 um CMOS,” in Proc. 2003 Int. Symp. Circuits and Systems (ISCAS’03), 2003, vol. 1, pp. I-693–I-696.
[47] R. Vijayaraghavan, S. K. Islam, M. R. Haider, and L. Zuo, “Wideband injection-locked frequency divider based on a process and temperature compensated ring oscillator,” IET Circuits, Devices & Syst., vol. 3, pp. 259–267, 2009.
[48] G. De Vita, F. Marraccini, and G. Iannaccone, “Low-voltage low-power CMOS oscillator with low temperature and process sensitivity,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS 2007), 2007, pp. 2152–2155.
[49] K. R. Lakshmikumar, V. Mukundagiri, and S. L. J. Gierkink, “A process and temperature compensated two-stage ring oscillator,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC’07), 2007, pp. 691–694.