| 研究生: |
陳稚勳 Chen, Chin-Hsun |
|---|---|
| 論文名稱: |
雙向並聯直流電源轉換模組之研製 Study and Implementation of Paralleled Bidirectional DC-DC Converters |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 雙向電能轉換器 、同步式轉換器 、數位控制 、主動均流 、自動主樸法 、外迴路控制 |
| 外文關鍵詞: | Bidirectional converter modules, synchronous buck, digital control, active current sharing, automatic current sharing, outer loop regulation |
| 相關次數: | 點閱:84 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文採用同步式架構與數位訊號處理器研製一套雙向並聯直流電能轉換模組,該模組採用自動主僕法並配合外迴路控制法以改善負載電流不平衡的問題,俾實現各模組間的輸出均流特性。本文利用脈波寬度調變開關模型建立均流迴路小訊號模型,據此設計類比穩壓比例-積分控制器與均流比例控制器,並利用數位再設計法將控制器轉換為數位控制的型式。由實驗結果顯示,無論在穩態、動態升載以及動態降載下,轉換器模組皆能提供穩定的電能輸出,並維持良好的均流效果。當並聯模組發生故障時,其餘正常模組仍能維持穩定的輸出並保持均流的效果,證實所採用控制法能使並聯模組具有良好的均流效果與故障容忍度。
This thesis employs a synchronous buck structure and a digital signal processor to develop paralleled bidirectional DC-DC converters using automatic master-slave current-sharing method and outer-loop regulation in order to realize current-sharing characteristics among different modules. A proportional-integral analog voltage controller and a proportional current-sharing controller are both designed using a current-sharing small-signal model which is developed by Pulse-Width-Modulation switch, and they are converted to digital controllers by using digital redesign method eventually. Experimental results show that the proposed converter modules can supply stable DC output power with good current-sharing characteristics under various stable operating conditions and different load-change conditions. Besides, the rest of the normal converter modules can supply stable power and maintain current-sharing characteristics when a fault of some of the paralleled converter modules occurs. It can be concluded from the analyzed results that the proposed paralleled bidirectional DC-DC converter modules with proper control methods can have good current-sharing characteristics and fault tolerance ability.
[1] G. Coppez, S. Chowdhury, and S. P. Chowdhury, “Impacts of energy storage in distributed power generation: a review,” in Proc. International Conference on Power System Technology, Oct. 2010, pp. 1-7.
[2] F. Ding, P. Li, B. Huang, F. Gao, C. Ding, and C. Wang, “Modeling and simulation of grid-connected hybrid photovoltaic/battery distributed generation system,” in Proc. International Conference on Electricity Distribution, Sep. 2010, pp. 1-10.
[3] L. Xu and D. Chen, “Control and operation of a DC microgrid with variable generation and energy storage,” IEEE Trans. Power Delivery, vol. 26, no. 4, pp. 2513-2522, Oct. 2011.
[4] V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch Part I : continuous conduction mode,” IEEE Trans. Aerospace and Electronic Systems, vol. 26, no. 3, pp. 497-505, May 1990.
[5] B. Choi, B. H. Cho, R. B. Ridley, and F. C. Lee, “Control strategy for multi-module parallel converter system,” in Proc. 21st Annual IEEE Power Electronics Specialists Conference, Jun. 1990, pp. 225-234.
[6] J. Rajagopalan, K. Xing, Y. Guo, F. C. Lee, and B. Manners, “Modeling and dynamic analysis of paralleled DC/DC converters with master-slave current sharing control,” in Proc. 11st Annual Applied Power Electronics Conference and Exposition, vol. 2, May 1996, pp. 678-684.
[7] Y. Panov, J. Rajagopalan, and F. C. Lee, “Analysis and design of N paralleled DC-DC converters with master-slave current-sharing control,” in Proc. 12th Annual Applied Power Electronics Conference and Exposition, vol. 1, Feb. 1997, pp. 436-442.
[8] S. Luo, Z. Ye, R. L. Lin, and F. C. Lee, “A classification and evaluation of paralleling methods for power supply modules” in Proc. 30th Annual IEEE Power Electronics Specialists Conference, vol. 2, Jun. 1999, pp. 901-908.
[9] X. Zhou, M. Donati, L. Amoroso, and F. C. Lee, “Improved light-load efficiency for synchronous rectifier voltage regulator module,” IEEE Trans. Power Electronics, vol. 15, no. 5, pp. 826-834, Sep. 2000.
[10] C. S. Lin and C. L. Chen, “Single-wire current-share paralleling of current-mode-controlled DC power supplies,” IEEE Trans. Industrial Electronics, vol. 47, no. 4, pp. 780-786, Aug. 2000.
[11] F. Musavi, K. AI-Haddad, and H. Y. Kanaan, “A large signal averaged modeling and control of paralleled DC/DC converters with automatic load sharing,” in Proc. 20th Annual Applied Power Electronics Conference and Exposition, vol.2, Mar. 2005, pp. 1353-1358.
[12] W. Xiao, B. Zhang, and D. Qiu, “Analysis and design of an automatic-current-sharing control based on average-current mode for parallel boost converters,” in Proc. IEEE Power Electronics and Motion Control Conference, vol. 2, Aug. 2006, pp. 1-5.
[13] H. Mao, L. Yao, C. Wang, and I. Batarseh, “Analysis of inductor current sharing in nonisolated and isolated multiphase DC-DC converters,” IEEE Trans. Industrial Electronics, vol. 54, no. 6, pp. 3379-3388, Dec. 2007.
[14] G. Abbas, E. Sturtzer, and N. Abouchi, “Design and implementation of a PWM-based digital controller for a high-frequency DC-DC buck converter working in CCM using classical control techniques,” in Proc. New Circuits and Systems Conference, Jun. 2010, pp. 317-320.
[15] D. Kim, S. Kim, Y. Kang, and B. Choi, “Control design of a multi-module bidirectional converter for battery charging/ discharging applications,” in Proc. Power Electronics Conference, Jun. 2010, pp. 1268-1272.
[16] W. Y. Wang, H. H. C. Iu, W. Du, and V. Sreeram, “Multiphase DC-DC converter with high dynamic performance and high efficiency,” IET Trans. Power Electronics, vol. 4, no. 1, pp. 101-110, Jan. 2011.
[17] D. Kim, S. Choi, S. Kim and B. Choi, “MATLAB-based digital design of current mode control for multi-module bidirectional battery charging/discharging converters,” in Proc. 8th International Conference on Power Electronics, Jun. 2011, pp. 2256-2260.
[18] W. Du, Y. Tao, Z. Chen, and C. Wang, “Sensorless current sharing in digitally controlled multiphase buck DC-DC converters,” in Proc. International Conference on Electrical, Control and Computer Engineering, Jun. 2011, pp. 302-307.
[19] J. Mahdavi, A. Emadi, and H. A. Toliyat, “Application of state space averaging method to sliding mode control of PWM DC/DC converters,” in Proc. IEEE Industry Applications Conference, vol. 2, Oct. 1997, pp. 820-827.
[20] J. H. Su, J. J. Chen, and D. S. Wu, “Learning feedback controller design of switching converters via MATLAB/SIMULINK,” IEEE Trans. Education, vol. 45, no. 4, pp. 307-315, Nov. 2002.
[21] R. W. Erickson, Fundamentals of Power Electronics, New York: Chapman and Hall, 1997.
[22] 吳財福,電力電子學綜論,全華圖書,2007年2月。
[23] Texas Instruments, “Understanding Buck Power Stages in SMPS,” Texas Instruments Corp., Texas, USA, Tech. Rep., Mar. 1999.
[24] Texas Instruments, “Understanding Boost Power Stages in SMPS,” Texas Instruments Corp., Texas, USA, Tech. Rep., Mar. 1999.
[25] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, California: Addison-Wesley, 1998, pp. 279-352.
[26] International Rectifier, “Application Note AN-978 HV Floating MOS-Gate Driver ICs,” International Rectifier Corp., California, USA. [Online]. Available: http://www.irf.com/technical-info/ appnotes/an-978.pdf, Retrieved Date: Jun. 2012.
[27] 余國威,採用感應機之整合式啟動-發電系統研究,國立成功大學電機工程學系碩士論文,2009年7月。
[28] 曾百由,dsPIC數位訊號控制器原理與應用MPLAB C30開發實務,宏友圖書,2009年12月。
[29] Microchip Technology, “dsPIC30F4011/4012 Data Sheet,” Microchip Technology Corp., Arizona, USA. [Online]. Available: http://www.microchip.com/downloads/en/DeviceDoc/70135G.pdf, Retrieved Date: Jun. 2012.
[30] Microchip Technology, “MPLAB C30 C Compiler User’s Guide,” Microchip Technology Corp., Arizona, USA. [Online]. Available: http://www.microchip.com/downloads/en/DeviceDoc/C30_Users_Guide_51284e.pdf, Retrieved Date: Jun. 2012.
[31] Microchip Technology, “16-Bit Language Tools Libraries,” Microchip Technology Corp., Arizona, USA. [Online]. Available: http://www.microchip.com/downloads/en/DeviceDoc/51456G.pdf, Retrieved Date: Jun. 2012.
[32] Microchip Technology, “AN1207 Switch Mode Power Supply (SMPS) Topologies (Part II),” Microchip Technology Corp., Arizona, USA, Tech. Rep., Jun. 2012.