| 研究生: |
黃立宇 Huang, Li-Yu |
|---|---|
| 論文名稱: |
具新型旋轉式感應耦合結構之非接觸式磁浮旋轉供電系統研製 Design and Implementation of Contactless Maglev Rotating Power Transfer System with New Rotary Inductive Coupled Structure |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 旋轉感應耦合結構 、非接觸式旋轉供電系統 、無刷雙饋式馬達 |
| 外文關鍵詞: | rotary inductive coupled structure, contactless rotating power transfer system, brushless doubly fed motor |
| 相關次數: | 點閱:99 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在針對高速旋轉設備中旋轉部檢測儀器之電能需求,研製具新型旋轉式感應耦合結構之非接觸式磁浮旋轉供電系統。文中透由磁路模擬軟體分析磁極結構作為感應耦合結構之傳能特性,並以延伸其結構原有之導磁材料設計所示之旋轉式感應耦合結構,使其導磁路徑封閉以增強電磁耦合能力。為驗證本文所提旋轉式感應耦合結構其電能傳遞之穩定性,文中實際建置一組無刷雙饋式馬達,並以其轉子激磁電樞作為本文非接觸式旋轉供電之應用標的。整體結構為求精密,其製作採用三維列印技術設計其支架,並搭配兩組永磁型磁浮軸承以支撐轉軸懸浮,最終建構完整測試平台以驗證旋轉供電之穩定性。經實驗測試本文系統確實能以非接觸式旋轉供電方式驅動機具運轉,其電能應用端無刷雙饋馬達最高轉速為4800 rpm,整體系統最大功率輸出為297W,最佳電能傳輸效率則為82.1%。
This thesis designs and implements a contactless maglev rotating power transfer system with new rotary inductive coupled structure for the testing equipment on shaft of high-speed rotation applications. The magnetic field finite element method simulation software is used to analyze the power transfer characteristics of the structure with magnetic poles. This thesis extends the magnetic material of the structure to improve the coupling capability. Moreover, for the purpose to verify the stability of power transfer of the proposed rotary inductive coupled structure, this thesis builds a brushless doubly fed motor and use its armatures of rotor as the power transfer target. In order to design an accurate structure, the three-dimensional printing technology is used to print its frame. Two permanent magnetic bearings are used to levitate the shaft. Finally, an integrated platform is constructed for the experiment and verify that the rotating power transfer system can drive the device work. The maximum rotational speed of the shaft is 4800 rpm. The maximum output power received in load is 297W and the maximum efficiency is about 82%.
[1] G. Gao and W. Chen, “Design challenges of wind turbine generators,” in Proc. EIC, 2009, pp. 146-152.
[2] D. C. Ludois, J. Reed, and K. Hanson, “Capacitive power transfer for rotor field current in synchronous machines,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4638-4645, Nov. 2012.
[3] L. Huang, A. P. Hu., A. Swain, S. Kim, and Y. Ren, “An overview of capacitively coupled power transfer—a new contactless power transfer solution,” in Proc. IEEE ICIEA, 2013, pp. 461-465.
[4] D. C. Ludois, M. J. Erickson, and J. K. Reed, “Aerodynamic fluid bearings for translational and rotating capacitors in noncontact capacitive power transfer systems,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1025-1033, Apr. 2014.
[5] 沈紘宇,非接觸式電能傳輸之新型感應耦合結構設計,國立成功大學電機工程學系博士論文,2014年。
[6] 詹凱筌,具可拆卸機制封閉式耦合結構之非接觸式線型感應饋電軌道系統,國立成功大學電機工程學系碩士論文,2012年。
[7] 張遠帆,具疊圈型感應耦合結構陣列之非接觸式電動車供電軌道,國立成功大學電機工程學系碩士論文,2014年。
[8] 周彥成,具多環交疊型感應耦合結構之非接觸式電動車充電平台,國立成功大學電機工程學系碩士論文,2014年。
[9] 陳信銘,旋轉式感應耦合結構於可旋型非接觸式電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2014年。
[10] G. Schweitzer and E. H. Maslen, Magnetic Bearings: Theory, Design, and Application to Rotating Machinery, 2009: Springer-Verlag.
[11] B. Bolund, H. Bernhoff and M. Leijon, “Flywheel energy and power storage systems,” Renew. Sustain. Energy Rev., vol. 11, no. 2, pp. 235–258, 2007.
[12] A. Abdolkhani, A. P. Hu, and N. K. C. Nair, “A double stator through-hole type contactless slipring for rotary wireless power transfer applications,” IEEE Trans. Energy. Convers., vol. 29, no. 2, pp. 426-434, Jan. 2014.
[13] A. Abdolkhani and A. P. Hu, “A novel detached magnetic coupling structure for contactless power transfer,” in Proc. IEEE IECON, 2011, pp. 1103-1108.
[14] A. Abdolkhani and A. P. Hu, “A sandwiched magnetic coupling structure for contactless slipring applications, “Int. Geoinformatics Res. Develop., vol. 2, no. 3, 2011.
[15] A. Abdolkhan, A. P. Hu, G. A. Covic, and M. Moridnejad, “Contactless slipring system based on rotating magnetic field principle for rotary applications,” in Proc. IEEE ECCE, 2013, pp. 2566-2573.
[16] A. Abdolkhani and A. P. Hu, “A contactless slipring system by means of axially travelling magnetic field,” in Proc. IEEE ECCE, 2012, pp. 1796-1803.
[17] K. D. Papastergiou and D. E. Macpherson, “An airborne radar power supply with contactless transfer of energy-Part I: Rotating transformer,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2874-2884, Oct. 2007.
[18] K. D. Papastergiou and D. E. Macpherson, “Air-gap effects in inductive energy transfer,” in Proc. IEEE PESC, 2008, pp. 4092-4097.
[19] Y. T. Huang, C. J. Chen, and W. B. Shu, “Finite element analysis on characteristics of rotary transformers,” IEEE Trans. Magn., vol. 30, no. 6, pp. 4866-4868, Nov. 1994.
[20] R. L. Steigerwals, C. F. Saj, and G. A. Croff, “Analysis and design of a contactless rotary power transfer system,” in Proc. IEEE PESC, 2001, pp. 2125-2130.
[21] R. Trevisan and A. Costanzo, “ A 1-kW contactless energy transfer system based on a rotary transformer for sealing rollers,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6337-6345, Nov. 2014.
[22] B. A. Potter and S. A. Shirsavar, “Design, implementation and characterization of a contactless power transfer system for rotating applications,” in Proc. IEEE IECON, 2006, pp. 2168-2173.
[23] J. Veitengruber, F. Rinderknecht, H. E. Friedrich, “Preliminary investigations of an inductive power transfer system for the rotor power supply of an electric traction drive,” in Proc. IEEE EVER, 2014, pp. 1-8.
[24] D. Hirschmann, D. Hirschmann, C. P. Dick, S. Richter, R. W. D. Doncker, “Design of a contactless rotary energy transmission for an industrial application,” in Proc. IEEE PESC, 2008, pp. 4314-4319.
[25] Z. Long, X. Lin, W. Yuan, and J. Zhang, “Modeling on a non-contact power transmission system in ultrasonic machining,” in Proc. IEEE ROBIO, 2013, pp. 1042-1047.
[26] D. Bortis, L. Fassler, A. Looser, and J. W. Kolar, “Analysis of rotary transformer concepts for high-speed applications,” in Proc. IEEE APEC, 2013, pp. 3262-3269.
[27] D. Bortis, I. Kovacevic, L. Fassler, and J. W. Kolar, “Optimization of rotary transformer for high-speed applications,” in Proc. IEEE COMPEL, 2013, pp. 1-6.
[28] C. Stancu, T. Ward, K. Rahman, R. Dawsey, and P. Savagian, “Separately excited synchronous motor with rotary transformer for hybrid vehicle application,” in Proc. IEEE ECCE, 2014, pp. 5844-5851.
[29] M. Reinhard, C. Spindler, T. Schuer, V. Birk, and J. Denk, “New approaches for contactless power transmission systems integrated in PM motor drives transferring electrical energy to rotating loads,” in Proc. IEEE EPE, 2011, pp. 1-10.
[30] T. A. Stuart, R. J. King, and H. A. Shamseddin, “Rotary transformer design with fixed magnetizing and/or leakage inductances,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-22, no. 5, pp. 565-572, 1986.
[31] S. H. Marx, and R. W. Bounds, “A kilowatt rotary power transformer,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-7, no. 6, pp. 1157-1163, Nov. 1971.
[32] M. Carpita, M. D. Vivo, S. Gavin, and D. Bommottet, “A rotating contactless power transfer system for space applications,” in Proc. IEEE SPEEDAM, 2014, pp. 238-242.
[33] J. Hirai, T. W. Kim, and A. Kawamura, “Integral motor with driver and wireless transmission of power and information for autonomous subspindle drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 13-20, Jan. 2000.
[34] J. Hirai, T. W. Kim, and A. Kawamura, “Wireless transmission of power and information and information for cableless linear motor drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 21-27, Jan. 2000.
[35] A. Esser and A. Nagel, “Contactless high speed signal transmission integrated in a compact rotatable power transformer,” European Power Electronics Association, pp. 409-414, 1993.
[36] A. Esser and H. C. Skudelny, “A new approach to power supplies for robots,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 872-875, 1991.
[37] A. Kawamura, K. Ishioka, and J. Hirai, “Wireless transmission of power and information through one high-frequency resonant AC link inverter for robot manipulator applications,” IEEE Trans. Ind. Appl., vol. 32, no. 3, pp. 503-508, May/Jun. 1996.
[38] M. Ruviaro, F. Runcos, N. Sadowski, and I. M. Borges, “Analysis and test results of a brushless doubly fed induction machine with rotary transformer,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2670-2677, Jun, 2012.
[39] M. Ruviaro and F. Runcos, “A brushless doubly fed induction machine with flat plane rotary transformers,” in Proc. IEEE ICEM, 2012, pp. 23-29.
[40] G. Friedrich and A. Girardin, “Integrated starter generator,” IEEE Ind. Appl. Mag., vol. 15, no. 4, pp. 26-34, Jul./Aug. 2009.
[41] J. Legranger, G. Friedrich, S. Vivier, and J. C. Mipo, “Design of a brushless rotor supply for a wound rotor synchronous machine for integrated starter generator,” in Proc. IEEE VPPC, 2007, pp. 236-241.
[42] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, Feb. 2004.
[43] M. P. Kazmierkowski and A. J. Moradewicz, “Contactless Energy Transfer System With FPGA-Controlled Resonant Converter,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3181-3190, Sep. 2010.
[44] “Slip ring solutions-industrial applications,” Schleifring und Apparatebau GmbH, Germany. [Online]. Available: http://www.schleifring.com/inc/fil
e.inc.php?id=106&filename=SCHLEIFRING_IndustrialApps.pdf
[45] “Slip rings rotating transmission systems,” Venturetec Mechatronics GmbH, Germany. [Online]. Available: http://venturetec.de/downloads/Sli
p_ring_brochure_vm_web_version.pdf
[46] “PowerLink Non-Contact Power Technology,” Analogic Co., U. S. A. [Online]. Available: http://www.analogic.com/products-medical-co
mputer-tomography-powerlink.htm
[47] “Rotary link connector,” Nihon Maruko International Group, Japan. [Online]. Available: http://nmg-interconnect.com/pdf/RLC-panf.pdf
[48] “Proxi-ring,” PowerbyProxi, New Zealand. [Online]. Available: http://powerbyproxi.com/innovations/ industrial/proxi-ring/
[49] “Inductive power transfer and data coupling devices,” MESA Systems Co., U. S. A. [Online]. Available: http://www.mesasystemsco.com/pdf/In
ductive_Power_transfer_data_coupling_products_overview.pdf
[50] “Contactless slip rings,” Pan-Link Electrical Technology Co., Ltd., China. [Online]. Available: http://www.pan-link.cn/ch/other_pro_3.html
[51] “安全資料表,” 3D Systems Co., U. S. A. [Online]. Available: http://cubify.s3.amazonaws.com/Printers/Safety%20data%20sheets/cube_cubex_sds_abs_chinese_traditional.pdf
[52] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[53] X. Liu, W. M. Ng, C. K. Lee, and S. Y. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits,” in Proc. IEEE APEC’08, 2008, pp. 645-650.
[54] UCC3895 Data Sheet, Texas Instruments Inc., 2013.
[55] IR2110 Data Sheet, International Rectifier Inc., 2005.
[56] TCST2103 Data Sheet, Vishay Inc., 2009.
[57] TC4093BP Data Sheet, Toshiba Inc., 2001.
[58] PIC18F4520 Data Sheet, Microchip Technology Inc., 2008.
[59] 曾百由,微處理器原理與應用組合語言與PIC18微控制器,五南圖書出版公司,台灣,2009年。