簡易檢索 / 詳目顯示

研究生: 汪曙峰
Wang, Shu-Feng
論文名稱: 循跡運動精度改善之探討
A Study on Accuracy Improvement for Contour Following Tasks
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 92
中文關鍵詞: 進給率調節器曲率參數式自由曲線輪廓誤差交叉耦合控制器
外文關鍵詞: feedrate regulator, contour error, Cross-Coupled Controller (CCC), free-form parametric curves, curvature
相關次數: 點閱:208下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在循跡運動控制問題中,如何改善輪廓誤差是提升加工精度的重要課題。其中一種改善的方式為設計輪廓誤差控制器,藉由輪廓誤差控制器得到補償量,降低輪廓誤差。另一種方式為進給率的調變,雖然大的進給率可以縮短加工時間,然而若在切削軌跡上有較劇烈的變化或是輪廓軌跡上有較大的彎曲處,反而會因此產生較大的輪廓誤差。改善方法之一為降低進給率,但這會使得加工時間拉長。因此,為了在加工精度與加工效率兩者之間取得平衡,本論文根據自由曲線之曲率大小以及曲率的變化量,採用模糊邏輯控制的概念來調變進給率。其調變方式為:在曲率較大時(加工曲線為崎嶇彎角),降低進給率;反之,在曲率較小時(加工曲線為平坦處),增加進給率。為了進一步降低輪廓誤差,本論文利用輪廓誤差轉移函數(CETF)的概念,分析與設計交叉耦合控制器。
    此外,本論文將提出一整合型輪廓誤差控制架構,其結合模糊邏輯進給率調節器、位置迴路控制器、交叉耦合控制器與速度前饋控制器,並於X-Y平台進行驗證。實驗結果顯示,上述之整合型輪廓誤差控制架構確實能有效地抑制輪廓誤差,達到提升循跡運動精度之需求。另外實驗結果亦顯示,本論文所提出之模糊邏輯進給率調節器於不同的命令軌跡追隨運動中,均可進行適當的進給率調變以降低輪廓誤差並且改善整體加工效率。

    In contour following control problems, contour error reduction is essential to high performance machining. One way to do this is to design a contour error controller, and another approach is feedrate adjustment. Although a larger feedrate can reduce the time for machining, a larger contour error may also be produced if the contour for machining has a larger curvature or significant variation. In contrast, a smaller feedrate requires longer machining time. Hence to achieve an acceptable balance between accuracy and efficiency, we propose that the feedrate could be adjusted according to the curvature of the free-form curve. In the proposed approach, based on the concept of fuzzy logic, the feedrate command is adjusted in terms of magnitude of curvature and change in curvature. When the curvature is large (the rough area), the feedrate command is reduced. On the contrary, when the curvature is small, the feedrate command is increased. In order to further reduce the contour errors, a cross-coupled controller is designed and analyzed using the concept of the contour error transfer function (CETF). In addition, an integrated contour error control architecture consisting of fuzzy logic based feedrate regulator, position loop controller, cross-coupled controller and velocity feedforward controller is proposed to further improve the contouring accuracy. Several contour following tasks have been conducted on an X-Y table to evaluate feasibility of the proposed approach. Experimental results indicate that the proposed integrated contour error control architecture indeed reduce the contour error so that the requirements of the contour following accuracy can be satisfied. Furthermore, experimental results also indicate that feedrate command can be appropriately adjusted by the proposed approach to reduce the contour error and improve the machining efficiency in different free form contour following tasks.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 第一章 緒論 1 1-1 前言 ……………………………………………………………1 1-2 研究動機與文獻回顧 …………………………………………2 1-3 本文架構 ………………………………………………………5 第二章 NURBS插值器與曲率計算 7 2-1 NURBS參數式曲線介紹…………………………………………7 2-1-1 NURBS參數式曲線數學模型……………………………7 2-2 參數式曲線插值器……………………………………………10 2-2-1 參數式曲線插值器簡介………………………………10 2-3 自由曲線之曲率計算…………………………………………13 2-3-1 參數式自由曲線曲率計算……………………………14 2-3-2 微小線段近似求解曲率………………………………16 2-3-3 曲率計算方法之分析與探討…………………………18 第三章 進給率調節器設計 26 3-1 利用微小線段計算曲率並給定容許進給率…………………26 3-1-1 實驗分析與討論………………………………………28 3-2 限制弦誤差量之進給率調變…………………………………30 3-2-1 實驗分析與討論………………………………………31 3-3 模糊邏輯進給率調節器………………………………………36 3-3-1 模糊邏輯控制器(FLC)簡介 …………………………37 3-3-2 模糊邏輯進給率調節器………………………………40 第四章 交叉耦合控制器 44 4-1 輪廓誤差估測法………………………………………………44 4-1-1 直線命令輪廓誤差……………………………………45 4-1-2 自由曲線命令輪廓誤差………………………………46 4-2 交叉耦合控制架構……………………………………………47 4-3 輪廓誤差轉移函數(CETF)……………………………………48 4-3-1 未加入交叉耦合控制器………………………………49 4-3-2 加入交叉耦合控制器……………………………………50 4-3-3 輪廓誤差轉移函數………………………………………51 4-4 交叉耦合控制器設計…………………………………………53 4-4-1 系統數學模型量………………………………………55 4-4-2 位置迴路控制器增益值計算…………………………56 4-4-3 交叉耦合控制器增益值計算…………………………58 4-5 整合型輪廓誤差控制系統……………………………………59 第五章 實驗設備與實驗結果 60 5-1 實驗設備………………………………………………………60 5-2 命令軌跡之給定………………………………………………62 5-3 實驗結果………………………………………………………64 第六章 結論與建議 87 參考文獻 ……………………………………………………………88

    [1] M. Tomizuka, “Zero phase error tracking algorithm for digital control,” ASME Journal of Dynamic Systems, Measurement and Control, vol. 109, no. 1, pp. 65-68, 1987.
    [2] Y. Koren, “Cross-coupled biaxial computer for manufacturing systems,” ASME Journal of Dynamic Systems, Measurement and Control, vol. 102, no. 4, pp. 265-272, 1980.
    [3] Y. Koren and C.-C. Lo, “Variable-gain cross-coupling controller for contouring,” Analysis of the CIRP, pp. 371-374. 1991.
    [4] K. Srinivasan and P. K. Kularni, “Cross-coupled control of biaxial feed drive servomechanisms,” ASME Journal of Dynamic Systems, Measurement and Control, vol. 112, no. 2, pp. 225-232, 1990.
    [5] Y. Koren and S. Jee, “Fuzzy logic cross-coupling control,” Analysis of the CIRP, no. 4, pp. 104-108, 1995.
    [6] J.-H. Chin and T.-C. Lin, “Cross-coupled precompensation method for the contouring accuracy of computer numerically controlled machine tools,” International Journal of Machine Tools & Manufacture, vol. 37, no. 7, pp. 947-967, 1997.
    [7] J. Crispin, L. Ibrani, and G. E. Taylor, G. Waterworth, “High performance trajectory control using a neural network cross-coupling gain scheduler,” in Proceedings of IEEE International Conference on Electronics, Circuits and Systems, vol. 3, pp. 333 - 336, 1998.
    [8] S.-S. Yeh and P.-L. Hsu, “Theory and applications of the robust cross-coupled control design,” ASME Journal of Dynamic Systems, Measurement and Control, vol. 121, pp. 524-529, 1999.
    [9] S.-S. Yeh and P.-L. Hsu, “A new approach to biaxial cross-coupled control,” in Proceedings of IEEE International Conference on Control Applications, pp. 168-173, 2000.
    [10] J.-H. Chin, Y.-M. Cheng, and J.-H. Lin, “Improving contour accuracy by Fuzzy-logic enhanced cross-coupled precompensation method,” Robotics and Computer Integrated Manufacturing, vol. 20, no. 1, pp. 65-76, 2004.
    [11] H.-Y. Chuang and C.-H. Liu, “A model-referenced adaptive control strategy for improving contour accuracy of multi-axis machine tools,” IEEE Transactions on Industry Applications, vol. 28, no. 1, pp. 221–227, 1991.
    [12] Y.-S. Tarng, H.-Y. Chuang, and W.-T. Hsu, “Intelligent cross-coupled fuzzy feedrate controller design for CNC machine tools based on genetic algorithms,” International Journal of Machine Tools & Manufacture, vol. 39, no. 10, pp. 1673-1692, 1999.
    [13] K.-H. Su, C.-Y. Hsieh, and M.-Y. Cheng, “Design and implementation of biaxial motion control systems using fuzzy logic based adjustable feedrate,” in Proceedings of IEEE International Conference on Mechatronics, Budapest, Hungary, pp. 209-214, 2006.
    [14] R. T. Farouki and S. Shah, “Real-time CNC interpolators for Pythagorean-hodograph curves,” Computer Aided Geometric Design, vol. 13, pp. 583-600, 1996.
    [15] H.-T. Yau and M.-J. Kuo, “NURBS machining and feed rate adjustment for high-speed cutting of complex sculptured surfaces,” International Journal of Production Research, vol. 39, no. 1, pp. 21-41, 2001.
    [16] S.-S. Yeh and P.-L. Hsu, “Adaptive-feedrate interpolation for parametric curves with a confined chord error,” Computer Aided Geometric Design, vol. 34, no. 3, pp. 229-237, 2002.
    [17] Y. Sun, J. Wang, and D. Guo, “Guide Curve Based Interpolation Scheme of Parametric Curves for Precision CNC Machining[J],” International Journal of Machine Tools & Manufacture, vol. 46, no. 3-4, pp. 235-242, 2006.
    [18] 郭洲成, CNC伺服控制器之NURBS 即時插值器設計與實現, 碩士論文, 國立成功大學機械系, 八十八學年度.
    [19] M.-Y. Cheng, M.-C. Tsai, and J.-C. Kuo, “Real-time NURBS command generators for CNC servo controllers,” International Journal of Machine Tools & Manufacture, vol. 42, no.7, pp. 801-813, 2002.
    [20] 鄭中緯,鄭銘揚,蔡明祺, 即時參數式插值器之設計與實現, 中國機械工程學會第18屆全國學術研討會論文集, pp. 267-272,2001.
    [21] 鄭中緯, 運動控制之即時NURBS曲線及曲面插值器設計與實現, 博士論文, 國立成功大學機械系, 九十二學年度.
    [22] 張裕淵, 整合精密運動控制器與NURBS插值器之CNC設計, 碩士論文, 國立交通大學控制工程研究所, 八十八學年度.
    [23] D.-M. Tsay, and Jr.-C.-O. Huey, “Application of ration B-Spline to the synthesis of Cam-Follower motion programs,” ASME Journal of Mechanical Design, vol. 115, pp. 621-626, 1993.
    [24] D.-M. Tsay and B.-J. Lin, “Improving the Geometry design of Cylindrical Cams using Nonparametric Rational B-Splines,” Computer-Aided Design, vol. 28, no. 1, pp. 5-15, 1996.
    [25] L. Piegl, “On NURBS: A Survery,” IEEE Computer Graphics &Application, vol. 11, no. 1, pp. 55-71 , 1991.
    [26] PV. O’Neil, Advance Engineering Mathematics, 5th Edition CA, USA, Thomson Brooks/Cole, 2003.
    [27] FANUC, FANUC AC Servo motor series parameter manual, 1994.
    [28] L. A. Zadeh, “Fuzzy set,” Information Control, vol. 8, pp. 338-353, 1965.
    [29] 孫宗瀛,楊英魁, Fuzzy控制:理論,實作與應用, 全華科技圖書, 2005.
    [30] L.A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning,” Information Sciences, vol. 18, pp. 199-249, 1975.
    [31] C.-C. Lee, “Fuzzy logic in control system: fuzzy logic controller-part I,” IEEE Transaction on Systems, Man, and Cybernetics, vol. 20, no. 2, pp. 404-418, 1990.
    [32] C.-C. Lee, “Fuzzy logic in control system: fuzzy logic controller-part II,” IEEE Transaction on Systems, Man, and Cybernetics, vol. 20, no. 2, pp. 419-435, 1990.
    [33] M.-Y. Cheng and C.-C. Lee, “Motion Controller Design for Contour Following Tasks based on Real-time Contour Error Estimation,” IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1686-1695, 2007.
    [34] C.-S. Chen, Y.-H. Fan, and S.-P. Tseng, “Position Command Shaping Control in a Retrofitted Milling Machine,” International Journal of Machine Tools & Manufacture, vol. 46, no. 3, pp. 293-303, 2006.
    [35] 段漢民, PC-Based架構下工具機軌跡追蹤控制性能之提升, 碩士論文, 私立逢甲大學自動控制工程研究所, 九十一學年度.
    [36] B.-C. Kuo, Automatic Control System, 7th edition , Prentice-Hall, 1995.
    [37] TEXAS Instruments, TMS320 Float-Point DSP Optimizing C Compiler, 1991.
    [38] TEXAS Instruments, TMS320C3x C Source Debugger User’s Guide, 1991.
    [39] TEXAS Instruments, TMS320 C3x User’s Guide, 1992.
    [40] 惠汝生, 自動量測系統-LabVIEW, 全華科技圖書, 2002.
    [41] 謝勝治, 圖控式程式語言-LabVIEW, 全華科技圖書, 2002.
    [42] 張智星, MATLAB程式設計與應用, 2002.
    [43] 工研院, PMC32韌體開發技術手冊Ver2.0, 2002.
    [44] 工研院, EPCIO-601-1使用手冊, 2002.
    [45] Panasonic, AC伺服馬達驅動器MINAS-A系列操作說明書,.

    下載圖示 校內:2012-08-14公開
    校外:2012-08-14公開
    QR CODE