簡易檢索 / 詳目顯示

研究生: 趙譽祐
Jhao, Yu-You
論文名稱: 產業信號傳輸線之電性與電磁輻射分析
Analysis of Electrical Characteristics and Electromagnetic Radiation of Industrial Signal Transmission Lines
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 102
中文關鍵詞: 高頻信號損耗電磁輻射損耗材料損耗彎曲蛇線型傳輸線時間延遲
外文關鍵詞: High frequency signal degradation, Electromagnetic radiation loss, Material loss, Winding transmission line, Time delay
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今電子產業講求高頻、高資料傳輸,因此需要多通道的傳輸線設計,但在產業上還需要考慮信號損耗,以及不同通道的信號線長度不一樣而造成時間延遲不一致的問題。本論文分析微帶線、共平面以及背接金屬共平面三種傳輸線結構,探討信號線厚度對信號損耗的影響,以及信號線以彎曲型蛇線作為時間補償,這種作法是否有達到預期的效果,另外探討蛇線結構是否具有等效傳輸線的特性。經過HFSS和ADS模擬分析結果顯示,金屬信號線厚度增加,電磁輻射損耗隨著頻率呈指數型上升,材料損耗則是隨著頻率增加而呈一拋物線型先升後降,並在某一頻率存在最大值。電磁輻射損耗和材料損耗合計為整體損耗,整體損耗隨著基板介電係數增加而增加,低頻時,材料損耗所占比重較多,高頻則是電磁輻射損耗比重較多,而產業的工作頻率為MHz,屬於低頻,因此增加信號線厚度有助於信號傳輸損耗的改善。蛇線方面,其路徑長度與直線結構長度取一致,其時間延遲並不相等。蛇線結構視為傳輸線的條件必須在高頻的時候,才具有固定的等效特徵阻抗及相速度,其等效相速度受蛇線的波形波幅、波長影響,但等效特徵阻抗則大致維持一定值。

    Electronic products have been constantly progressing toward high frequency, high speed and multiple signal-transmission-lines. Signal degradation in high frequencies and inconsistent time delays for unequal signal path lengths may occur. In this study, the effect of the thickness of transmission lines on signal degradation and that of winding lines on time compensation were demonstrated. The results show that electromagnetic radiation loss increases with the thickness of signal lines while the material loss decreases with the thickness. Electromagnetic radiation loss increases exponentially with frequency, while material loss shows a parabolic curve, first upward then downward. Electromagnetic radiation loss dominates material loss for high frequency while material loss dominates for low frequency. The time delay of winding lines is not the same as that of a straight transmission. The winding lines operating at high frequency can be treated as equivalent transmission lines for which there exist steady characteristic impedance and phase velocity. The equivalent phase velocity of winding lines is lower than that of straight lines and depends on the spatial amplitude and wavelength of the winding lines. However, the equivalent characteristic impedance hardly depends on the spatial amplitude and wavelength.

    摘要 I Extended Abstract II 誌謝 XII 目錄 XIII 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 第二章 結構原理 4 2-1 傳輸線 4 2-1-1 傳輸線簡介 4 2-1-2 傳輸線理論 4 2-1-3 傳播延遲 8 2-1-4 無損傳輸線連接負載 8 2-1-5 有損傳輸線連接負載 10 2-2 微帶線原理 13 2-2-1 微帶傳輸線簡介 13 2-2-2 微帶線之傳輸組態 13 2-2-3 微帶線之各項參數公式計算及考量 14 2-2-4 微帶線損失 16 2-2-5 微帶線之厚度與寬度 17 2-3 共平面波導 21 第三章 軟體分析方法 25 3-1 模擬分析方法與軟體 25 3-1-1 HFSS電磁模擬軟體 25 3-1-2 電磁輻射損耗與材料損耗計算 29 3-2 HFSS與ADS之頻域時域協同分析探討 30 3-2-1 ADS時域分析初探 30 3-2-2 ADS時間延遲獲取方法探討 34 3-2-3 HFSS與ADS之頻域/時域協同模擬 38 3-3 共振點探討 41 第四章 信號線厚度 46 4-1 信號線厚度 46 4-2 模擬規劃 47 4-2-1 微帶線 47 4-2-2 背接金屬共平面 49 4-3 結果與討論 52 4-3-1 微帶線介質為空氣之電磁輻射及材料損耗 52 4-3-2 微帶線介質為PI之電磁輻射及材料損耗 55 4-3-3 微帶線介質為FR4之電磁輻射及材料損耗 58 4-3-4 不同介質對微帶線損耗之影響 61 4-3-5 背接金屬共平面介質為空氣之電磁輻射及材料損耗 62 4-3-6 背接金屬共平面介質為PI之電磁輻射及材料損耗 65 5-1 蛇線結構 69 5-1-1 前言 69 5-1-2 模型建構 71 5-1-3 檢驗傳輸線之模型 72 5-2 模擬規劃 73 5-2-1 時間延遲 73 5-2-2 檢驗蛇線結構 77 5-2-3 共平面蛇線之波形波速k 81 5-2-4 微帶線蛇線之波形振幅A和波速k 83 5-3 結果與討論 86 5-3-1 共平面蛇線之時間延遲補償 86 5-3-2 共平面蛇線之傳輸線探討 88 5-3-3 共平面蛇線波形波數變化對共平面特性之影響 92 5-3-4 微帶線蛇線波形振幅變化對微帶線特性之影響 95 5-3-5 微帶線蛇線波形波數變化對微帶線特性之影響 98 第五章 結論 101 參考文獻 102

    [1] D. M. Pozar, Microwave engineering: John Wiley & Sons, 2009.
    [2] D. K. Cheng, Field and wave electromagnetics vol. 2: Addison-wesley New York, 1989.
    [3] F. E. Gardiol, Microstrip circuits: New York: Wiley, 1994.
    [4] T. C. Edwards, Foundations for microstrip circuit design: John Wiley & Sons Incorporated, 1992.
    [5] S. H. Hall, G. W. Hall, and J. A. McCall, High-speed digital system design: a handbook of interconnect theory and design practices: Citeseer, 2000.
    [6] Z. Mingmin, S. Donglin, D. Fei, K. Shenqing, and W. Xiaoxiao, "The effect of impedance matching to high-speed connector's signal integrity," in 2006 7th International Symposium on Antennas, Propagation & EM Theory, 2006, pp. 1-4.
    [7] N. N. Rao, Elements of engineering electromagnetics: Prentice Hall, 1991.
    [8] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications vol. 167: John Wiley & Sons, 2004.
    [9] R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," Microwave Theory and Techniques, IEEE Transactions on, vol. 16, pp. 342-350, 1968.
    [10] E. J. Denlinger, "Losses of microstrip lines," IEEE Transactions on Microwave Theory Techniques, vol. 28, pp. 513-522, 1980.
    [11] I. Bahl and R. Garg, "Simple and accurate formulas for a microstrip with finite strip thickness," Proceedings of the IEEE, vol. 65, pp. 1611-1612, 1977.
    [12] C. P. Wen, "Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Transactions on Microwave Theory and Techniques, vol. 17, pp. 1087-1090, 1969.
    [13] R. N. Simons, Coplanar waveguide circuits, components, and systems vol. 165: John Wiley & Sons, 2004.
    [14] K. G.-R. G.-I. Bahl and P. Bhartis, "Microstrip Lines and Slotlines," Artech House, Boston, 1996.
    [15] S. Chaimool, S. Kerdsumang, P. Akkraeakthalin, and V. Vivek, "A broadband CPW-fed square slot antenna using loading metallic strips and a widened tuning stub," in International Symp. on Communications and Information Technologies, Sappom, Japan, 2004, pp. 26-29.

    無法下載圖示 校內:2021-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE