| 研究生: |
林和達 Lin, Ho-Ta |
|---|---|
| 論文名稱: |
鋰鈷電池的健康與電量狀態估測 Prediction of State-of-Health and State-of-Charge for Li-Co Batteries |
| 指導教授: |
梁從主
Liang, Tsorng-Juu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 鋰鈷電池 、健康狀態 、電量狀態 、估測 |
| 外文關鍵詞: | Li Co battery, state of health, state of charge, prediction |
| 相關次數: | 點閱:62 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電池的健康與電量狀態估測是電池管理系統中很重要的技術之一。本論文主要在研究鋰鈷電池的健康與電量狀態估測,此技術可使用於手機、電動工具、電動車或混合電動車,可提供電池狀態的資訊,避免因為電池電量不足或發生故障,所造成的不方便或致命的意外發生。
為了解鋰鈷電池的健康與電量狀態特性,本研究總共使用60顆鋰鈷電池,進行電池壽命循環實驗。由實驗所得數據,分析鋰鈷電池的健康與電量狀態特性。實驗結果顯示,以每一次測試週期中的充電時間、放電瞬間的電壓降、及放電完休息一段時間的開路電壓為參數,再利用機率神經網路及模糊辨識方法,診斷電池的健康狀態。另外,採用電池目前電壓與前兩次的電壓值、此相關電壓之取樣時間、及當時之放電電流。再利用模糊推論結合模糊辨識與模糊神經網路方法,診斷電池的電量狀態。但有關兩取樣電壓的時間非定值,在高電量狀態及低電量狀態之取樣時間較短,在中電量時的取樣時間為定值。
機率神經網路屬於監督式學習網路適合於分類型應用。模糊辨識是模糊數學的一個重要理論,可應用於辨識。模糊推論系統可依據專家經驗或實際數值資料,推論輸入與輸出的關係,可用於非線性或時變的控制問題。模糊推論之模糊神經網路具有可訓練與學習之能力。本研究利用上敘四種方式,分別估測鋰鈷電池的健康與電量狀態。比較機率神經網路與模糊辨識估測結果,兩個方法皆很好,其最大誤差皆為1.64%。此方法只需使用20顆鋰鈷電池的訓練數據,每一次計算電池的健康狀態的時間不超過15.6 ms。另外電池的電量狀態估測結果,以模糊神經網路的方法比較好,可得到的最大誤差為17.7%。此方法只需使用36顆鋰鈷電池的訓練數據,而一次計算電池的健康狀態的時間不超過148 ms。本研究驗證了鋰鈷電池的健康與電量狀態估測,可使用較少的訓練數據結合本研究所提方法,實現線上即時估測。
The prediction of the state of health (SOH) and state of charge (SOC) of a battery is an important aspect of a battery management system. This research proposed a method to predict the SOH and SOC of Li-Co batteries. This proposed technology can be used in the battery management system of mobile phones, power tools, electric vehicles, or hybrid electric vehicles. It provides useful battery information to avoid the inconvenience or the fatal accidents due to the battery failure or power outage.
For life cycle testing, 60 Li-Co batteries were used to study the characteristics of the SOH and SOC. The charging time, the voltage drop in the very initial discharging, and the open circuit voltage after the discharged battery takes a rest can be used as the SOH patterns for probabilistic neural network (PNN) and fuzzy identification (FI). The voltage at the current sampling time and the previous two sampled voltages, the sampling time, and the present discharging current are used as the SOC patterns. Then, the fuzzy inference system (FIS) combined with FI and the fuzzy neural network (FNN) are used to estimate the SOC of the battery. The sampling time mentioned above will be affected by the current SOC. The sampling time during the normal SOC is constant but the sampling time near the very high SOC and the very low SOC is shorter due to the faster voltage variation.
PNN belongs to the supervising type of learning network and is applicable in classification. FI is an important theory of fuzzy math that can be used for word and fingerprint identification. The FIS can utilize the experiences of experts or the experimental data to infer the corresponding relation between the input and output. It can be used to deal with non-linear and time-varied control problems. The FIS based FNN with the ability of training and learning. The four methods described above were used in this study to predict the SOH and SOC of the battery. The experimental results show that both the PNN and FI estimate SOH very well with using only 20 Li-Co batteries’ testing data. The maximum error of the predicted SOH is 1.64% and the computation time to predict the SOH was less than 15.6 ms. The prediction of SOC using FNN is performed better FIS with the training data taken from 36 Li-Co battery testing. The maximum error is 17.7% and the computation time to predict the SOC is less than 148 ms. The experimental results depict that the SOH and SOC of Li-Co battery can be predicted quite accurate and than can be used for the online prediction
[1] J. Cao and A. Emadi, “Batteries Need Electronics,” IEEE Ind. Electron. Mag., vol. 5, no. 1, pp. 27 – 35, March 2011.
[2] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo and J. M. Carrasco, “Energy Storage Systems for Transport and Grid Applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, Dec. 2010.
[3] C. Pearson, K. Schrantz and J. Neubauer, “Lithium-ion space battery technology development and infusion,“ in Proc. IEEE Aerosp. Conf., Big Sky Resort, USA, pp. 1 – 12, March 2010.
[4] P. Wolfs, “An economic assessment of “second use” lithium-ion batteries for grid support,“ in Proc. IEEE Universities Power Eng. Conf., Christchurch, New Zealand, pp. 1 – 6, Dec. 2010.
[5] W. Luo, C. Lv, L. Wang and C. Liu, “Study on impedance model of Li-ion battery,” in Proc. IEEE Ind. Electron. and Applicat., Beijing, China, pp. 1943 - 1947, June 2011.
[6] J. D. Dogger, B. Roossien and F. D. J. Nieuwenhout, “Characterization of Li-Ion Batteries for Intelligent Management of Distributed Grid-Connected Storage,” IEEE Trans. Energy Convers., vol. 26, pp. 256 – 263, March 2011.
[7] R. Li, J. Wu, Wang and G. Li, “Prediction of state of charge of Lithium-ion rechargeable battery with electrochemical impedance spectroscopy theory,” in Proc. IEEE Ind. Electron. and Applicat., Taichung, Taiwan, pp. 684 – 688, June 2010.
[8] Handbook of Batteries, 3rd ed., McGraw-Hill, New York: pp. 1.3 – 6.1, 34.1 – 35.9, 2002.
[9] J. D. Dogger, B. Roossien and F. D. J. Nieuwenhout, “Characterization of Li-Ion Batteries for Intelligent Management of Distributed Grid-Connected Storage,” IEEE Trans. Energy Convers., vol. 26, no. 1, pp. 256 – 263, March 2011.
[10] P. Garcia, L. M. Fernandez, C. A.Garcia and F. Jurado, “Energy Management System of Fuel-Cell-Battery Hybrid Tramway,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4013-4023, Dec. 2010.
[11] I. L. Kim, “A Technique for Estimating the State of Health of Lithium Batteries Through a Dual-Sliding-Mode Observer,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1013-1022, April 2010.
[12] M. Shahriari and M. Farrokhi, “On-line State of Health Estimation of VRLA Batteries Using State of Charge,” IEEE Trans. Ind. Electron., vol. pp, no. 99, pp. 1, Feb. 2012.
[13] I. L. Kim, “A Technique for Estimating the State of Health of Lithium Batteries Through a Dual-Sliding-Mode Observer,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1013-1022, April 2010.
[14] M. Urbain, M. Hinaje, S. Raël, B. Davat and P. Desprez, “Energetical Modeling of Lithium-Ion Batteries Including Electrode Porosity Effects,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 862 – 872, Sept. 2010.
[15] W. Luo, C. Lv, L. Wang and C. Liu, “Study on impedance model of Li-ion battery,” in Proc. IEEE Ind. Electron. and Applicat., Harbin, China, pp. 1943 - 1947, June 2011.
[16] J. Jang and J. Yoo, “Equivalent Circuit Evaluation Method of Lithium Polymer Battery Using Bode Plot and Numerical Analysis,” IEEE Trans. Energy Convers., vol. 26, no. 1, pp. 290 – 298, March 2011.
[17] R. Li, J. Wu, H. Wang and G. Li, “Prediction of state of charge of Lithium-ion rechargeable battery with electrochemical impedance spectroscopy theory,” in Proc. IEEE Ind. Electron. and Applicat., Harbin, China, pp. 684 – 688, June 2010.
[18] T. Kim and W. Qiao, “A Hybrid Battery Model Capable of Capturing Dynamic Circuit Characteristics and Nonlinear Capacity Effects,” IEEE Trans. Energy Convers., vol. 26, no. 4, pp. 1172 – 1180, Dec. 2011.
[19] F. Zhang, G. Liu, L. Fang and H. Wang, “Estimation of Battery State of Charge With H∞ observer: Applied to a Robot for Inspecting Power Transmission Lines,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1086 – 1095, Feb. 2012.
[20] J. Kim, S. Lee and B. H. Cho, “Complementary Cooperation Algorithm Based on DEKF Combined With Pattern Recognition for SOC Capacity Estimation and SOH Prediction,” IEEE Trans. Ind. Electron., vol. 27, no. 1, pp. 436 – 451, Jan. 2012.
[21] M. Shahriari and M. Farrokhi, “On-line State of Health Estimation of VRLA Batteries Using State of Charge,” IEEE Trans. Ind. Electron., vol. pp, no. 99, pp. 1, Feb. 2012.
[22] M. A. Roscher, O. S. Bohlen and D. U. Sauer, “Reliable State Estimation of Multicell Lithium-Ion Battery Systems,” IEEE Trans. Energy Convers., vol. 26, no. 3, pp. 737 – 743, Sept. 2011.
[23] Y. S. Lee, W. Y. Wang and T. Y. Kuo, “Soft Computing for Battery State-of-Charge (BSOC) Estimation in Battery String Systems,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 229 - 239, Jan. 2008.
[24] M. Charkhgard and M. Farrokhi, “State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4178 – 4187, Dec. 2010.
[25] Z. Jiucai, C. Song, H. Sharif and M. Alahmad, “Modeling Discharge Behavior of Multicell Battery,” IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 1133 – 1141, Dec. 2010.
[26] M. Einhorn, F. V. Conte, C. Kral and J. Fleig, “A Method for Online Capacity Estimation of Lithium Ion Battery Cells Using the State of Charge and the Transferred Charge,” IEEE Trans. Ind. Applicat., vol. 48, no. 2, pp. 736 – 741, March/April 2012.
[27] N. Cui, C. Zhang, Q. Kong and Q. Shi, “A combined method of battery SOC estimation for electric vehicles,” in Proc. IEEE Ind. Electron. and Applicat., Jinan, China, pp. 1147 – 1151, June 2010.
[28] S. Qiua, Z. Chena, M.A. Masrurb and Y. L. Murpheya, “Battery hysteresis modeling for state of charge estimation based on Extended Kalman Filter,” in Proc. IEEE Ind. Electron. and Applicat., Beijing, China, pp. 184 – 189, June 2011.
[29] V. Agarwal, K. Uthaichana, R. A. DeCarlo and L. H. Tsoukalas, “Development and Validation of a Battery Model Useful for Discharging and Charging Power Control and Lifetime Estimation,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 821 – 835, Sept. 2010.
[30] C. Xia, C. Guo and T. Shi, “A Neural-Network-Identifier and Fuzzy-Controller-Based Algorithm for Dynamic Decoupling Control of Permanent-Magnet Spherical Motor,” IEEE Trans. Ind. Electron., vol. 57, pp. 2868 - 2878, Aug. 2010.
[31] A. Slowik, “Application of an Adaptive Differential Evolution Algorithm With Multiple Trial Vectors to Artificial Neural Network Training,” IEEE Trans. Ind. Electron., vol. 58, pp. 3160 - 3167, Aug. 2010.
[32] V. N. Ghate and S. V. Dudul, “Cascade Neural-Network-Based Fault Classifier for Three-Phase Induction Motor,” IEEE Trans. Ind. Electron.,, vol. 58, pp. 1555 - 1563, May 2011.
[33] S. Huang and K. K. Tan, “Intelligent Friction Modeling and Compensation Using Neural Network Approximations,” IEEE Trans. Ind. Electron., vol. 59, pp. 3342 - 3349, Aug. 2012.
[34] Y. Pan and J. Wang, “Model Predictive Control of Unknown Nonlinear Dynamical Systems Based on Recurrent Neural Networks,” IEEE Trans. Ind. Electron., vol. 59, pp. 3089 - 3101, Aug. 2012.
[35] H. Zhuang, K. S. Low and W. Y. Yau, “Multichannel Pulse-Coupled-Neural-Network-Based Color Image Segmentation for Object Detection,” IEEE Trans. Ind. Electron., vol. 59, pp. 3299 – 3308, Aug. 2012.
[36] G. W. Chang, C. I. Chen and Y. F. Teng, “Radial-Basis-Function-Based Neural Network for Harmonic Detection,” IEEE Trans. Ind. Electron., vol. 57, pp. 2171 – 2179, June 2010.
[37] C. I. Chen, “Virtual Multifunction Power Quality Analyzer Based on Adaptive Linear Neural Network,” IEEE Trans. Ind. Electron., vol. 59, pp. 3321 – 3329, Aug. 2012.
[38] C. H. Lu, “Wavelet Fuzzy Neural Networks for Identification and Predictive Control of Dynamic Systems,” IEEE Trans. Ind. Electron., vol. 58, pp. 3046 – 3058, July 2011.
[39] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai and C. H. Kuan, “DSP-Based Probabilistic Fuzzy Neural Network Control for Li-Ion Battery Charger,” IEEE Trans. Power Electron., vol. 27, pp. 7382 - 3794, Aug. 2012.
[40] F. J. Lin, Y. C. Hung, J. C. Hwang, I. P. Chang and M. T. Tsai, “Digital signal processor-based probabilistic fuzzy neural network control of in-wheel motor drive for light electric vehicle,” IET Trans. Elect. Power Applicat., vol. 6, pp. 47 - 61, Feb. 2012.
[41] N. K. Singh, M. Tripathy and A. K. Singh, “A radial basis function neural network approach for multi-hour short term load-price forecasting with type of day parameter,” in Proc. IEEE Ind. and Inform. Syst., Kandy, Sri Lanka, pp. 316 – 321, Aug. 2011.
[42] W. D. S. Roshan, R. A. R. C. Gopura and A. G. B. P. Jayasekara, “Financial forecasting based on artificial neural networks Promising directions for modeling,” in Proc. IEEE Ind. and Inform. Syst., Kandy, Sri Lanka, pp. 3122 – 327, Aug. 2011.
[43] H. R. K. Nagahamulla, U. R. Ratnayake and A. Ratnaweera, “Monsoon rainfall forecasting in Sri Lanka using artificial neural networks,” in Proc. IEEE Ind. and Inform. Syst., Kandy, Sri Lanka, pp. 305 – 309, Aug. 2011.
[44] S. Hiremath and S. Kumar Patra, “Transmission rate prediction for Cognitive Radio using Adaptive Neural Fuzzy Inference System,” in Proc. IEEE Ind. and Inform. Syst., Mangalore, India, pp. 92 – 97, July 2010.
[45] Z. Zhang and R. Liu, “Application of fuzzy neural network in optical fiber fusion defect recognition system by AS1773 protocol,” in Proc. IEEE Ind. and Inform. Syst., Dalian, China, pp. 196 – 199, July 2010.
[46] A. Gomperts, A. Ukil and F. Zurfluh, “Development and Implementation of Parameterized FPGA-Based General Purpose Neural Networks for Online Applications,” IEEE Trans. Ind. Inform., vol. 7, pp. 78 – 89, Feb. 2011.
[47] T. Orlowska-Kowalska and M. Kaminski, “FPGA Implementation of the Multilayer Neural Network for the Speed Estimation of the Two-Mass Drive System,” IEEE Trans. Ind. Inform., vol. 7, pp. 436 – 445, Aug. 2011.
[48] M. O. Efe, “Neural Network Assisted Computationally Simple PI D Control of a Quadrotor UAV,” IEEE Trans. Ind. Inform., vol. 7, pp. 354 – 361, May 2011.
[49] J. J. Yin, W. Tang and K. F. Man, “A Comparison of Optimization Algorithms for Biological Neural Network Identification,” IEEE Trans. Ind. Electron., vol. 57, pp. 1127 – 1131, March 2010.
[50] K. M. Passino and S. Yurkovich, Fuzzy Control, California: Addison Wesley Longman, pp. 24-110, 273-281, 1998.
[51] J. Chen, K. Huang, F. Wang and H. Wang, “E-learning Behavior Analysis Based on Fuzzy Clustering,“ in Proc. IEEE Genetic and Evolutionary Comput. Conf., Guilin, China, pp. 863 – 866, Oct. 2009.
[52] Z. Li, Q. Zhao, J. Zhou and L. Li, “A New Method for the Algorithm of Close Degree in Fuzzy Pattern Recognition,” in Proc. IEEE Intell. Networks and Intell. Syst. Conf., Tianjin, China, pp. 338-341, Nov. 2009.
[53] K. Kong and Z. H. Xu, “On Fuzzy Recognition of Water Quality Risk Source,” in Proc. IEEE Ind. Mechatronics and Automat., Wuhan, China, pp. 634-637, May 2010.
[54] L. W. Lee and S. M. Chen, “A New Method for Fuzzy Decision-making Based on Likelihood-Based Comparisons Relations,” in Proc. IEEE Machine Learning and Cybern., Baoding, China, pp. 3021-3025, July 2009.
[55] C. Chen, B. Zhang, G. Vachtsevanos and M. Orchard, “Machine Condition Prediction Based on Adaptive Neuro–Fuzzy and High-Order Particle Filtering,” IEEE Trans. Ind. Electron., vol. 58, pp. 4353 - 4364, Sept. 2011.
[56] C. H. Lu, “Wavelet Fuzzy Neural Networks for Identification and Predictive Control of Dynamic Systems,” IEEE Trans. Ind. Electron., vol. 58, pp. 3046 – 3058, July 2011.
[57] R. H. Abiyev and O. Kaynak, “Type 2 Fuzzy Neural Structure for Identification and Control of Time-Varying Plants,” IEEE Trans. Ind. Electron., vol. 57, pp. 4147 – 4159, Dec. 2010.
[58] Fuzzy Control, Addison Wesley Longman, California: pp. 24-110, 273-281, 1998.
[59] A Course in Fuzzy Systems and Control, Prentice Hall, Hong Kong, pp. 90-124, 1997.
[60] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai and C. Hsuan Kuan, “DSP-Based Probabilistic Fuzzy Neural Network Control for Li-Ion Battery Charger,” IEEE Trans. Power Electron., vol. 27, pp. 3782 – 3794, Aug. 2012.
[61] R. J. Wai and L. C. Shih, “Adaptive Fuzzy-Neural-Network Design for Voltage Tracking Control of a DC–DC Boost Converter,” IEEE Trans. Power Electron., vol. 27, pp. 2104 – 2115, April 2012.
[62] C. L. Tseng, S. Y. Wang, S. C. Chien and C. Y. Chang, “Development of a Self-Tuning TSK-Fuzzy Speed Control Strategy for Switched Reluctance Motor,” IEEE Trans. Power Electron., vol. 27, pp. 2141 – 2152, April 2012.
[63] V. Q. Leu, H. H. Choi and J. W. Jung, “Fuzzy Sliding Mode Speed Controller for PM Synchronous Motors With a Load Torque Observer,” IEEE Trans. Power Electron., vol. 27, pp. 2130 – 2139, March 2012.
[64] L. O. de Araujo Porto Henriques, L. G. Barbosa Rolim, W. Issamu Suemitsu, J. A. Dente and P. J. Costa Branco, “Development and Experimental Tests of a Simple Neurofuzzy Learning Sensorless Approach for Switched Reluctance Motors,” IEEE Trans. Power Electron., vol. 26, pp. 3330 – 3344, Nov. 2011.
[65] C. S. Chen, “Supervisory Interval Type-2 TSK Neural Fuzzy Network Control for Linear Microstepping Motor Drives With Uncertainty Observer,” IEEE Trans. Power Electron., vol. 26, pp. 2049 – 2064, July 2011.
[66] B. N. Alajmi, K. H. Ahmed, S. J. Finney and B. W. Williams, “Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System,” IEEE Trans. Power Electron., vol. 26, pp. 1022 – 1030, April 2011.
[67] L. Hang, S. S. Liu, G. Yan, B. Qu and Z. Y. Lu, “An Improved Deadbeat Scheme With Fuzzy Controller for the Grid-side Three-Phase PWM Boost Rectifier,” IEEE Trans. Power Electron., vol. 26, pp. 1184 – 1191, April 2011.
[68] M. Singh and A. Chandra, “Application of Adaptive Network-Based Fuzzy Inference System for Sensorless Control of PMSG-Based Wind Turbine With Nonlinear-Load-Compensation Capabilities,” IEEE Trans. Power Electron., vol. 26, pp. 165 – 175, Jan. 2011.
[69] R. S. Rebeiro and M. N. Uddin, “Performance Analysis of an FLC-Based Online Adaptation of Both Hysteresis and PI Controllers for IPMSM Drive,” IEEE Trans. Ind. Applicat., vol. 48, pp. 12 – 19, Jan. 2012.
[70] C. S. Chen, T. T. Ku and C. H. Lin, “Design of Phase Identification System to Support Three-Phase Loading Balance of Distribution Feeders,” IEEE Trans. Ind. Applicat., vol. 48, pp. 191 – 198, Jan. 2012.
[71] A. Rubaai and P. Toung, “EKF-Based PI-/PD-Like Fuzzy-Neural-Network Controller for Brushless Drives,” IEEE Trans. Ind. Applicat., vol. 47, pp. 2391 – 2401, Nov. 2011.
[72] A. Rubbai, J. Jerry and S. T. Smith, “Performance Evaluation of Fuzzy Switching Position Controller for Automation and Process Industry Control,” IEEE Trans. Ind. Applicat., vol. 47, pp. 2274 – 2282, Oct. 2011.
[73] M. N. Uddin and R. S. Rebeiro, “Online Efficiency Optimization of a Fuzzy-Logic-Controller-Based IPMSM Drive,” IEEE Trans. Ind. Applicat., vol. 47, pp. 1043 – 1050, March 2011.
[74] M. M. Rashid, N. A. Rahim, M. A. Hussain and M. A. Rahman, “Analysis and Experimental Study of Magnetorheological-Based Damper for Semiactive Suspension System Using Fuzzy Hybrids,” IEEE Trans. Ind. Applicat., vol. 47, pp. 1051 – 1059, March 2011.
[75] M. N. Uddin, “An Adaptive-Filter-Based Torque-Ripple Minimization of a Fuzzy-Logic Controller for Speed Control of IPM Motor Drives,” IEEE Trans. Ind. Applicat., vol. 47, pp. 350 – 358, Jan. 2011.
[76] C. Chen, B. Zhang, G. Vachtsevanos and M. Orchard, “Machine Condition Prediction Based on Adaptive Neuro–Fuzzy and High-Order Particle Filtering,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4353 - 4364, Sept. 2011.
[77] R. H. Abiyev and O. Kaynak, “Type 2 Fuzzy Neural Structure for Identification and Control of Time-Varying Plants,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4147 – 4159, Dec. 2010.
[78] C. H. Lu, “Wavelet Fuzzy Neural Networks for Identification and Predictive Control of Dynamic Systems,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 3046 – 3058, July 2011.
[79] F. J. Lin and P. H. Chou, “Adaptive Control of Two-Axis Motion Control System Using Interval Type-2 Fuzzy Neural Network,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 178 – 193, Jan. 2009.
[80] I. C. M. Mario and G. D. Sergio, “An Adaptive Neural-Fuzzy Approach for Object Detection in Dynamic Backgrounds for Surveillance Systems,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3286 – 3298, Aug. 2012.
[81] R. J. Wai and C. M. Liu, “Design of Dynamic Petri Recurrent Fuzzy Neural Network and Its Application to Path-Tracking Control of Nonholonomic Mobile Robot,” IEEE Trans. Ind. Electron., vol. 56, no.7, pp. 2667 – 2683, July 2009.
[82] Y. X. Liao, J. H. She and M. Wu, “Integrated Hybrid-PSO and Fuzzy-NN Decoupling Control for Temperature of Reheating Furnace,” IEEE Trans. Ind. Electron., vol. 56, no.7, pp. 2704 – 2714, July 2009