| 研究生: |
賴旭竑 Lai, Hsu-Hung |
|---|---|
| 論文名稱: |
仿獨角仙機構中鞘翅振幅與拍翅範圍對後翅作用之探討 A Study on the Effects of Elytron Flapping Amplitude and Flapping Range on Hindwing in a Biomimetic Rhinoceros Beetle Mechanism |
| 指導教授: |
葉思沂
Yeh, Szu-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 鞘翅拍撲振幅 、鞘翅拍撲範圍 、仿獨角仙機構 、PIV流場量測 |
| 外文關鍵詞: | Elytron, Beetle-mimicking mechanism, PIV, Hindwing |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討獨角仙鞘翅與後翅之間的流場交互作用,並評估不同鞘翅振幅與拍翅範圍對後翅氣動力表現之影響。為建立完整的氣動交互理解,實驗分為三個階段進行:動作分析、力量測試與PIV流場觀測。首先,透過動作追蹤技術與向量內積計算,驗證所設計仿生拍撲機構與實際獨角仙懸停飛行行為之相符性,三自由度運動軌跡相關係數皆高於0.99。接續使用六軸力感測器Mini40,量測拍撲過程中鞘翅與後翅所產生之升力與阻力;最後藉由粒子影像測速法(PIV),觀測拍撲關鍵時刻之渦流結構。
實驗結果顯示,鞘翅以振幅30度拍撲時可適度抑制後翅翼前緣渦流達成降低誘導阻力並維持升力輸出之氣動優勢,有效提升後翅整體升阻比;反之,當振幅增加則可能導致壓力阻力增加,同時過度抑制後翅之翼前緣渦流,導致氣動效率下降,並且振幅50度之實驗組展現最低之升阻比。此外,鞘翅拍翅範圍亦會影響後翅氣動表現,當其接近後翅最大升力區(32度~22度),對前緣渦的抑制效果最為顯著,且鞘翅拍撲範圍10度~40度實驗阻展現最高升阻比,40度~70度組為最低。
研究顯示若欲透過鞘翅提升後翅氣動效能,需同時考量其振幅與拍撲時機之配置,促使其渦流生成時序與空間分布與後翅達成良好匹配。本研究不僅揭示多翼系統間之渦流交互機制,亦為未來仿生飛行器設計與控制策略提供理論依據與實驗基礎。
This study investigates the aerodynamic interactions between the elytra and hindwings of the rhinoceros beetle, focusing on how different flapping amplitudes and ranges of the elytra affect hindwing performance. Experiments were conducted in three stages: kinematic analysis, force measurement, and PIV (Particle Image Velocimetry) flow field observation.
Motion tracking and vector inner product calculations confirmed the biomimetic flapping mechanism closely replicated beetle hovering, with correlation coefficients for all three degrees of freedom exceeding 0.99. A six-axis force sensor (Mini40) measured lift and drag generated by the elytra and hindwings, while PIV captured vortex structures at critical flapping moments.
Results show that a 30° elytra amplitude moderately suppresses the hindwing’s leading-edge vortex (LEV), reducing induced drag while maintaining lift and improving the lift-to-drag ratio. Larger amplitudes increase pressure drag and over-suppress the LEV, lowering efficiency; the 50° group showed the lowest lift-to-drag ratio.
Flapping range also affects performance. When aligned with the hindwing’s maximum lift phase (32°–22°), LEV suppression is strongest. The 10°–40° range achieved the highest lift-to-drag ratio, while the 40°–70° range performed worst.
Overall, optimizing both amplitude and timing of elytra flapping can enhance hindwing efficiency by aligning vortex formation with wing motion. These findings clarify vortex interaction mechanisms in multi-wing systems and offer design insights for bio-inspired flying robots.
1. Shyy, W., et al., Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016. 472(2186): p. 20150712.
2. Sun, J. and B. Bhushan, The structure and mechanical properties of dragonfly wings and their role on flyability. Comptes Rendus Mécanique, 2012. 340(1–2): p. 3–17.
3. Chin, D.D. and D. Lentink, Flapping wing aerodynamics: From insects to vertebrates. Journal of Experimental Biology, 2016. 219(7): p. 920–932.
4. Xu, R., X. Zhang, and H. Liu, Effects of wing-to-body mass ratio on insect flapping flights. Physics of Fluids, 2021. 33(2).
5. Nabawy, M.R. and W.J. Crowther, The role of the leading edge vortex in lift augmentation of steadily revolving wings: A change in perspective. Journal of the Royal Society Interface, 2017. 14(132): p. 20170159.
6. Lentink, D. and M.H. Dickinson, Rotational accelerations stabilize leading edge vortices on revolving fly wings. Journal of Experimental Biology, 2009. 212(16): p. 2705–2719.
7. Ellington, C.P., et al., Leading-edge vortices in insect flight. Nature, 1996. 384(6610): p. 626–630.
8. Liu, L. and M. Sun, The added mass forces in insect flapping wings. Journal of Theoretical Biology, 2018. 437: p. 45–50.
9. Dickinson, M.H., F.-O. Lehmann, and S.P. Sane, Wing rotation and the aerodynamic basis of insect flight. Science, 1999. 284(5422): p. 1954–1960.
10. Sane, S.P. and M.H. Dickinson, The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology, 2002. 205(8): p. 1087–1096.
11. Bomphrey, R.J., Advances in animal flight aerodynamics through flow measurement. Evolutionary Biology, 2012. 39(1): p. 1–11.
12. Lua, K.B., T. Lim, and K. Yeo, Effect of wing–wake interaction on aerodynamic force generation on a 2D flapping wing. Experiments in Fluids, 2011. 51: p. 177–195.
13. Lua, K.-B., et al., Wing–wake interaction of three-dimensional flapping wings. AIAA Journal, 2017. 55(3): p. 729–739.
14. Zheng, Y., Y. Wu, and H. Tang, An experimental study on the forewing–hindwing interactions in hovering and forward flights. International Journal of Heat and Fluid Flow, 2016. 59: p. 62–73.
15. 張家瑜, 翅膀相位對豆娘拍撲飛行之影響. 國立臺灣大學機械工程學系學位論文, 2016: p. 1–61.
16. Lee, B., H. Park, and S.-T. Kim, Three-dimensional wing behaviors of a rhinoceros beetle during takeoff flights. Journal of Mechanical Science and Technology, 2015. 29: p. 5281–5288.
17. Johansson, L.C., et al., Elytra boost lift, but reduce aerodynamic efficiency in flying beetles. Journal of the Royal Society Interface, 2012. 9(75): p. 2745–2748.
18. Xiang, J., et al., Effects of micro-structure on aerodynamics of Coccinella septempunctata elytra (ladybird) in forward flight as assessed via electron microscopy. Micron, 2017. 102: p. 21–34.
19. Sitorus, P.E., et al., The role of elytra in beetle flight: I. Generation of quasi-static aerodynamic forces. Journal of Bionic Engineering, 2010. 7(4): p. 354–363.
20. Dahmani, F. and C. Sohn, Effects of advance ratio on elytra-hindwing interaction in forward flying coleopteran beetle. Journal of Mechanical Science and Technology, 2018. 32: p. 5703–5710.
21. Van Truong, T., et al., Flow visualization of rhinoceros beetle (Trypoxylus dichotomus) in free flight. Journal of Bionic Engineering, 2012. 9(3): p. 304–314.
22. Le, T.Q., et al., Numerical investigation of the aerodynamic characteristics of a hovering coleopteran insect. Journal of Theoretical Biology, 2010. 266(4): p. 485–495.
23. Li, C. and H. Dong, Wing kinematics measurement and aerodynamics of a dragonfly in turning flight. Bioinspiration & Biomimetics, 2017. 12(2): p. 026001.
24. Zhao, L., et al., Aerodynamic effects of flexibility in flapping wings. Journal of the Royal Society Interface, 2010. 7(44): p. 485–497.
25. San Ha, N., et al., Structural characteristics of Allomyrina dichotoma beetle's hind wings for flapping wing micro air vehicle. Journal of Bionic Engineering, 2014. 11(2): p. 226–235.
26. Ha, N., et al., Anisotropy and non-homogeneity of an Allomyrina dichotoma beetle hind wing membrane. Bioinspiration & Biomimetics, 2011. 6(4): p. 046003.
27. Nguyen, Q.V., et al., Characteristics of a beetle's free flight and a flapping-wing system that mimics beetle flight. Journal of Bionic Engineering, 2010. 7(1): p. 77–86.
28. Phan, H.V. and H.C. Park, Generation of control moments in an insect-like tailless flapping-wing micro air vehicle by changing the stroke-plane angle. Journal of Bionic Engineering, 2016. 13(3): p. 449–457.
29. Truong, T.Q., et al., Effect of wing twisting on aerodynamic performance of flapping wing system. AIAA Journal, 2013. 51(7): p. 1612–1620.
30. 李羿賢, 昆蟲拍翅動作之地面效應分析. 國立成功大學航空太空工程學系學位論文, 2021.
31. Phan, H.V. and H.C. Park, Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot. Bioinspiration & Biomimetics, 2018. 13(3): p. 036009.
32. 楊森先, 魟魚的游動策略對推力與三維流場結構之影響. 國立臺灣大學機械工程學系學位論文, 2012: p. 1–87.
33. Oh, S., et al., A numerical and theoretical study of the aerodynamic performance of a hovering rhinoceros beetle (Trypoxylus dichotomus). Journal of Fluid Mechanics, 2020. 885: p. A18.
34. Manar, F., A. Medina, and A.R. Jones, Tip vortex structure and aerodynamic loading on rotating wings in confined spaces. Experiments in Fluids, 2014. 55: p. 1–18.
35. Ha, N.S., et al., Biomechanical properties of insect wings: The stress stiffening effects on the asymmetric bending of the Allomyrina dichotoma beetle's hind wing. PLoS One, 2013. 8(12): p. e80689.
36. Valvez, S., A.P. Silva, and P.N. Reis, Optimization of printing parameters to maximize the mechanical properties of 3D-printed PETG-based parts. Polymers, 2022. 14(13): p. 2564.
37. Sorimpuk, N.P., W.H. Choong, and B.-L. Chua, Thermoforming characteristics of PLA/TPU multi-material specimens fabricated with fused deposition modelling under different temperatures. Polymers, 2022. 14(20): p. 4304.
38. Truong, Q., et al., A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system. Bioinspiration & Biomimetics, 2011. 6(3): p. 036008.
39. Truong, T.V., et al., Flexible wing kinematics of a free-flying beetle (rhinoceros beetle Trypoxylus dichotomus). Journal of Bionic Engineering, 2012. 9(2): p. 177–184.
40. 柯景智, 以仿獨角仙拍撲機構探討不同鞘翅與後翼夾角之翼面交互作用. 國立成功大學航空太空工程學系學位論文, 2024.
41. Chen, W.-H. and S.-I. Yeh, Aerodynamic effects on an emulated hovering passerine with different wing-folding amplitudes. Bioinspiration & Biomimetics, 2021. 16(4): p. 046011.
42. Koehler, C., et al., Vortex visualization in ultra low Reynolds number insect flight. IEEE Transactions on Visualization and Computer Graphics, 2011. 17(12): p. 2071–2079.
校內:2030-08-21公開