| 研究生: |
黃俊瑋 Huang, Chun-Wei |
|---|---|
| 論文名稱: |
一般透天住宅太陽光電建置策略:自建與廠商租賃模式之研究 General Detached Residential Solar Photovoltaic Installation Strategy: A Study of Self-Financing and Vendor Leasing Models |
| 指導教授: |
蔡明田
Tsai, Ming-Tien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程管理碩士在職專班 Engineering Management Graduate Program(on-the-job class) |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 太陽光電 、自建模式 、租賃模式 、層級分析法(AHP) 、太陽能模擬軟體 |
| 外文關鍵詞: | solar photovoltaic (PV), self-financing model, vendor leasing model, analytic hierarchy process (AHP), PVsyst |
| 相關次數: | 點閱:102 下載:30 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球能源轉型與淨零碳排政策的推動,太陽光電系統已成為提升再生能源比重的重要策略之一。臺灣透天住宅因產權單純、屋主自主性高,成為安裝太陽能系統的理想場域。然而,住宅太陽光電的建置方式主要分為「自建」與「廠商租賃」兩種模式,如何選擇最適合的方案,仍需從經濟效益、技術構面及風險與政策因素等多層面進行評估。
本研究採用層級分析法(AHP),並結合太陽能模擬軟體PVsyst,評估自建與租賃模式的建置策略。研究首先透過文獻回顧與專家訪談確立評估構面,包含(1)經濟效益:投資成本、投資回收期與維護成本;(2)技術構面:維護保養、設備可靠度與系統安全性;(3)風險與政策:自然災害、投資風險、政府能源政策及地區日照條件。透過AHP專家問卷調查與PVsyst模擬發電量,進一步量化兩種模式並進行優劣比較。
研究結果顯示,自建模式雖然初始投資較高,但可享有政府補助與電費節省,長期回報較佳;而租賃模式則適合不願投入高額資金、但希望降低維護責任的住戶。此外,影響住戶選擇的關鍵因素包括政策誘因、初始成本、投資回收期及屋主的環保意識。本研究可作為政府制定太陽能推廣政策與業者市場策略的參考,進一步提高透天住宅太陽光電系統的普及率,促進臺灣再生能源發展。
With the global shift toward sustainable energy and net-zero carbon policies, solar photovoltaic (PV) systems have become a key strategy for expanding renewable energy deployment. In Taiwan, detached houses—with simple property structures and high homeowner autonomy—are particularly well-suited for solar PV installations. However, residential PV adoption primarily follows two models: self-financing and vendor leasing. Selecting the optimal model requires evaluating economic benefits, technical factors, risks, and policy influences.
This study applies the Analytic Hierarchy Process (AHP), integrated with the solar simulation software PVsyst, to assess self-financing and vendor leasing strategies. The evaluation framework, developed through a literature review and expert interviews, includes three dimensions: (1) economic benefits—investment costs, payback period, and maintenance expenses; (2) technical aspects—reliability, safety, and maintenance; and (3) risks and policies—natural disasters, investment risks, government incentives, and solar conditions. An expert survey using AHP and PVsyst simulations was conducted to quantify and compare the models.
Results indicate that while self-financing requires a higher initial investment, it benefits from government subsidies and electricity cost savings, providing better long-term returns. In contrast, leasing is more suitable for homeowners preferring lower upfront costs and less maintenance. Key decision factors include policy incentives, capital investment, payback period, and environmental awareness. The study offers practical insights for policymakers and industry, promoting solar PV adoption in detached houses and advancing Taiwan’s renewable energy goals.
1. Algarín, C. R., Llanos, A. P., & Castro, A. O. (2017). An analytic hierarchy process based approach for evaluating renewable energy sources. International Journal of Energy Economics and Policy, 7(4), 38-47.
2. Argüello, A., Lara, J. D., Rojas, J. D., & Valverde, G. (2017). Impact of rooftop PV integration in distribution systems considering socioeconomic factors. IEEE Systems Journal, 12(4), 3531-3542.
3. Çoban, V. (2020). Solar energy plant project selection with AHP decision-making method based on hesitant fuzzy linguistic evaluation. Complex & Intelligent Systems, 6, 507-529.
4. Dastrup, S. R., Zivin, J. G., Costa, D. L., & Kahn, M. E. (2012). Understanding the Solar Home price premium: Electricity generation and “Green” social status. European Economic Review, 56(5), 961-973.
5. de Souza Silva, J. L., Costa, T. S., de Melo, K. B., Sakô, E. Y., Moreira, H. S., & Villalva, M. G. (2020, February). A comparative performance of PV power simulation software with an installed PV plant. In 2020 IEEE international conference on industrial technology (ICIT) (pp. 531-535). IEEE.
6. Drury, E., Jenkin, T., Jordan, D., & Margolis, R. (2013). Photovoltaic investment risk and uncertainty for residential customers. IEEE Journal of Photovoltaics, 4(1), 278-284.
7. Feldman, D. (2012). Photovoltaic (PV) pricing trends: historical, recent, and near-term projections.
8. Franklin, E. (2018). Solar photovoltaic (PV) system components.
9. Karjalainen, S., & Ahvenniemi, H. (2019). Pleasure is the profit - The adoption of solar PV systems by households in Finland. Renewable Energy, 133, 44-52.
10. Karjalainen, S., & Ahvenniemi, H. (2019). Pleasure is the profit-the adoption of solar PV systems by households in Finland. Renewable energy, 133, 44-52.
11. Kengpol, A., Rontlaong, P., & Tuominen, M. (2013). A decision support system for selection of solar power plant locations by applying fuzzy AHP and TOPSIS: An empirical study.
12. Kouro, S., Leon, J. I., Vinnikov, D., & Franquelo, L. G. (2015). Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology. IEEE Industrial Electronics Magazine, 9(1), 47-61.
13. Liu, X., Eric, G. O., Tyner, W. E., & Pekny, J. F. (2014). Purchasing vs. leasing: A benefit-cost analysis of residential solar PV panel use in California. Renewable Energy, 66, 770-774.
14. Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234-281.
15. Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26.
16. Sindhu, S., Nehra, V., & Luthra, S. (2017). Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India. Renewable and Sustainable Energy Reviews, 73, 496-511.
17. Vargas, L. G. (1990). An overview of the analytic hierarchy process and its applications. European journal of operational research, 48(1), 2-8.
18. Wang, C. N., Dang, T. T., & Bayer, J. (2021). A two-stage multiple criteria decision making for site selection of solar photovoltaic (PV) power plant: A case study in Taiwan. IEEE Access, 9, 75509-75525.
19. Zipp, K. Buy vs. Lease In Residential PV Solar Markets.
20. 內政部建築研究所(2021)。新建集合住宅導入近零能源建築技術之推動策略研究。https://www.abri.gov.tw/PeriodicalDetail.aspx?n=861&s=2667&key=101&isShowAll=false
21. 王余尹(2024)。使用太陽能發電模擬軟體進行既有太陽能案場之成本效益分析(碩士論文)。國立成功大學工程管理所。
22. 王芷(2016)。消費者對太陽光電系統之購買態度與意願之影響因素探討(碩士論文)。國立政治大學國際經營與貿易學系。
23. 王泰琅(2024)。應用AHP 方法探討太陽能案場選址評選模式之研究(碩士論文)。國立成功大學高階管理碩士在職專班。
24. 行政院主計總處(2023)。臺南市住宅特性分析。https://tainan.dgbas.gov.tw/Download/Attachment/Download.ashx?VP_FileName=%E4%BD%8F%E5%AE%85%E9%9D%A2%E9%9D%A2%E8%A7%80~%E8%87%BA%E5%8D%97%E5%B8%82%E4%BD%8F%E5%AE%85%E7%89%B9%E6%80%A7%E5%88%86%E6%9E%9011207.pdf&VP_LinkSheetName=CGA_StatWebDetail&VP_LinkUID=10876
25. 周子筠(2009)。消費者對家庭用太陽光電系統之租與購願付價格與相關影響因素探討(碩士論文)。國立成功大學資源工程學系。
26. 國家實驗研究院(2024)。傳統矽晶太陽能電池。https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0K143524098971028797
27. 黃珮緁(2019)。太陽能光電系統之投資決策評估(碩士論文)。國立高雄科技大學企業管理研究所。
28. 經濟部(2024)。113年度再生能源電能躉購費率。https://www.moea.gov.tw/MNS/populace/news/News.aspx?kind=1&menu_id=40&news_id=114036
29. 經濟部能源署(2017)。再生能源資訊網。 https://www.re.org.tw/knowledge/more.aspx?cid=202&id=628
30. 經濟部能源署(2021)。能源轉型白皮書。https://www.moeaea.gov.tw/ECW/populace/content/wHandMenuFile.ashx?file_id=13104
31. 經濟部能源署(2023)。能源統計手冊。https://www.esist.org.tw/api/files/2023EnergyStaHandBook.pdf
32. 經濟部能源署(2024)。家戶屋頂設置太陽光電加速計畫。https://www.ey.gov.tw/File/D56D786C282E1607?A=C
33. 臺電(2024)。綠色能源。 https://service.taipower.com.tw/greennet/sustainable/green-energy/solar-energy
34. 謝明諺(2013)。單晶矽與多晶矽太陽能模組實測研究(碩士論文)。國立中央大學資源工程學系。