| 研究生: |
蔡明翰 Tsai, Ming-Han |
|---|---|
| 論文名稱: |
非接觸式電動車動態供電軌道系統之研製 Design and Implementation of Contactless Dynamic Power Track System for Electric Vehicles |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 非接觸式動態供電軌道 、陣列區塊耦合結構 、軌道偵測技術 |
| 外文關鍵詞: | dynamic contactless EV power track, inductively coupled structure array, track detection mechanism |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在針對低汙染大眾運輸電動載具研製非接觸式電動車動態供電軌道系統。透過磁場模擬軟體分析發射端與接收端結構尺寸,運用具均勻磁通密度分佈之環形線圈作為耦合架構,並利用導磁條導引磁通路徑增加發射場效果。根據品質因數、耦合結構效率及輸出功率公式推導設計發射端阻抗轉換電路架構與接收端諧振電路架構。供電軌道透過多個陣列區塊組裝而成,因此為了減少電能耗損供電軌道端亦加入軌道偵測機制進行控制,並透過RS-485通訊架構結合單晶片進行監控主機與陣列軌道資料訊息之傳遞。最後經由實驗量測得知,供電軌道與電能拾取側耦合結構間距15公分且精準對位下,輸出功率為537.6 W,此時供電軌道最高傳輸效率可達77.63%。
This thesis is aimed to utilize the technology of contactless power transmission system with the inductively coupled structure. In order to increase lateral displacement, the structure of the transmitter coil and the receiver coil is analyzed by the magnetic field simulation. The toroidal structure with the uniform magnetic flux density distribution has been proposed. According to theoretical analysis, the transmitter-side impedance transformation circuit and the receiver-side parallel resonant are utilized for improving the power transmission efficiency. In order to reduce the power consumption, the power track system is also controlled by the track detection mechanism technology, and using the RS-485 interface to communication with the centralized control to monitor the array track data. According to the experimental measurement, the output power is 537.6 W and the maximum transmission efficiency is about 77.63% over 15 cm airgap.
[1]F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034–5036, Sep. 1996.
[2]S. Li and C. C. Mi, “Wireless power transfer for electric vehicle application,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 4–17, Mar. 2015.
[3]S. Lukic and Z. Pantic, “Cutting the cord: static and dynamic inductive wireless charging of electric vehicles,” IEEE Electrific. Mag., vol. 1, no. 1, pp. 57–64, Sep. 2013.
[4]J. Achterberg, E. A. Lomonova, and J. d. Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, May 2008.
[5]Y. You, B. H. Soong, S. Ramachandran, and W. Liu, “Palm size charging platform with uniform wireless power transfer,” in Proc. Int. Conf. Control Autom. Robot. Vis., 2010, pp. 85-89.
[6]P. Raval, D. Kacprzak, and A. P. Hu, “A wireless power transfer system for low power electronics charging applications,” in Proc. IEEE Conf. Ind. Electron. Appl., 2011, pp. 520-525.
[7]H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[8]D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wireless power recharging for implantable bladder pressure chronic monitoring,” in Proc. IEEE Int. Conf. Nano/Micro Eng. Molecular Syst., 2010, pp. 604-607.
[9]H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transacutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, Sep. 1992.
[10]Y. Hori, “Future vehicle society based on electric motor, capacitor and wireless power supply,” in Proc. IPEC, 2010, pp. 2931-2934.
[11]B. Gu, J. S. Lai, N. Kees, and C. Zheng, “Hybrid-switching full-bridge dc–dc converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1132-1144, Mar. 2013.
[12]A. S. Masoum, S. Deilami, P. S. Moses, and A. Abu-Siada, “Impacts of battery charging rates of plug-in electric vehicle on smart grid distribution system,” in Proc. IEEE Eur. Conf. Innov. Smart Grid Technol., 2010, pp. 1-6.
[13]U. K. Madawala and D. J. Thrimawithana, “A two-way inductive power interface for single loads,” in Proc. IEEE Conf. Ind. Technol., 2010, pp. 673-678.
[14]Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, “Compact contactless power transfer system for electric vehicle,” in Proc. IPEC, 2010, pp. 807-813.
[15]N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. IEEE APEC, 1997, pp. 841-847.
[16]P. Sergeant and A. V. D. Bossche, “Inductive coupler for contactless power transmission,” IEEE Trans. Ind. Appl., vol. 2, no. 1, pp. 1-7, 2008.
[17]G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389-3391, Oct. 2006.
[18]J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
[19]K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with 'universal' inductive interface,” in Proc. Power Conv. Conf., 2002, pp. 227-232.
[20]M. Mochizuki, A. Asada, T. Ura, Z. Yoshida, K. Asakawa, T. Yokobiki, R. Iwase, T. Goto, M. Fujita, M Sato, O. L. Colombo, T. Tanaka, H. Zheng, and K. Nagahashi, “Development of seafloor geodetic observation system based on AUV and submarine cable technologies,” in Proc. OCEANS IEEE-Sydney, 2010, pp. 1-4.
[21]陳奕霖,具雙槽口型電能拾取器結構之非接觸式條帶狀感應供電軌道系統,國立成功大學電機工程學系碩士論文,2016年。
[22]張雅婷,電動搬運載具用非接觸式條帶型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2014年。
[23]楊昆翰,非接觸式片狀感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
[24]林采樺,具改良型感應耦合結構之非接觸式條帶狀供電軌道系統,國立成功大學電機工程學系碩士論文,2016年。
[25]“IPT charge for electric vehicles,” Daifuku., Japan, 1108-06CP-E, 2011.
[26]Kamen, “Contactless Power System,” Vahle Corp., Germany, Nr. 9d/EN, Nov. 2008.
[27]ElectReon uses smart road technology for wireless charging of electric vehicles, [Online]. Available: https://en.globes.co.il/en/article electreon tel aviv municipality to lay pilot electric road 1001275432, 2019.
[28]Off road trials for “electric highways” technology, [Online]. Available: https://www.gov.uk/government/news/off-road-trials-for-electric-highways-technology, 2015.
[29]J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, ‘‘Mode-matching technique applied to three-dimencional magnetic field modeling,’’ IEEE Trans. Magn., vol. 48, no. 11, pp. 3383-3386, Nov. 2012.
[30]J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, ‘‘Modeling framework for contactless energy transfer systems for linear actuators,’’ IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 391-399, Jan. 2013.
[31]J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, ‘‘Comparison of Position-Independent Contactless Energy Transfer Systems,’’ IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2059-2067, Apr. 2013.
[32]C. T. Rim, “The development and deployment of on-line electric vehicles (OLEV),” in Proc. IEEE ECCE, 2013, pp. 1–58.
[33]S. W. Lee, J. Huh, C. B. Park, N. S. Choi, G. H. Cho, and C. T. Rim, “On-line electric vehicle using inductive power transfer system,”in Proc. IEEE ECCE, 2010, pp. 1598–1601.
[34]J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666–3679, Dec. 2011.
[35]C. Liu, A. P. Hu, G. A. Covic, and N. K. C. Nair, “Comparative study of CCPT systems with two different inductor tuning positions,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 294-306, Jan. 2012.
[36]S. Raabe and G. A. Covic, “Practical design considerations for contactless power transfer quadrature pick-ups,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 400-409, Jan. 2013.
[37]C. Y. Huang, J. T. Boys, and G. A. Covic, “LCL Pickup Circulating Current Controller for Inductive Power Transfer Systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2081-2093, Apr. 2013.
[38]H. H. Wu and M. P. Masquelier, “An overview of a 50kW inductive charging system for electric buses,” in Proc. IEEE Transp. Electrific. Conf., 2015, pp. 1-4.
[39]W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Design for efficiency optimization and voltage controllability of series–series compensated inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191-200, Jan. 2014.
[40]W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Analysis and comparison of secondary series and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2979-2990, Jun. 2014.
[41]J. Hou, Q. Chen, X. Ren, X. Ruan, S. C. Wong, and C. K. Tse, “Precise characteristics analysis of series/series-parallel compensated contactless resonant converter,” IEEE J. Emerg. Sel. Topic Power Electron., vol. 3, no. 1, pp. 101-110, May 2015.
[42]General Information of INTIS for Developments of Wireless Electric Vehicles in INTIS Website. (2016). [Online]. Available: http://www.intis.de/intis/mobility.html.
[43]張遠帆,具疊圈型感應耦合結構陣列之非接觸式電動車供電軌道,國立成功大學電機工程學系碩士論文,2014年。
[44]胡采梅,具分段激發疊圈型感應耦合結構之非接觸式供電陣列軌道,國立成功大學電機工程學系碩士論文,2016年。
[45]王郁淇,非接觸式電動車供電軌道系統之區塊分段激發感應耦合結構,國立成功大學電機工程學系碩士論文,2017年。
[46]廖芝翊,應用五階變流器激勵源於具分段激發感應耦合結構之非接觸式供電陣列軌道,國立成功大學電機工程學系碩士論文,2018年。
[47]M. Borage, S. Tiwari, and S. Kotaiah, “Analysis and design of an LCL-T resonant converter as a constant-current power supply,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1547–1554, Dec. 2005.
[48]H. H. Wu, A. Gilchrist, D. Bronson, and K. D. Sealy, “A high efficiency 5 kW inductive charger for EVs using dual side control,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp. 585 - 595, Apr. 2012.
[49]C. Zhang, G. Wei, C. Zhu, R. Lu, and K. Song, “Research on a compensate topology of primary side based on parallel T-Type structure for wireless power transfer,” in Proc. IEEE Transp. Electrific. Conf., 2017, pp. 1-6.
[50]J. Zhao, T. Cai, S. Duan, H. Feng, C. Chen, and X. Zhang, “A general design method of primary compensation network for dynamic WPT system maintaining stable transmission power,” IEEE Trans. Power Electron., vol. 31, no. 12, Dec. 2016.
[51]N. O. Sokal and A. D. Sokal, “Class E-a new class of high-efficiency tuned single-ended switching power amplifiers.” IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168–176, Jun. 1975.
[52]Z. H. Wang, Y. P. Li, Y. Sun, C. S. Tang, and X. Lv, “Load detection model of voltage-fed inductive power transfer system,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5233–5243, Feb. 2013.
[53]S. Choi, J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, “New cross-segmented power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5832-5841, Dec. 2013.
[54]S. Y. Jeong, H. G. Kwak, G. Jang, S. Y. Choi, and C. T. Rim, “Dual-purpose non-overlapping coil sets as metal object and vehicle position detections for wireless stationary EV chargers,” IEEE Trans. Power Electron., pp. 1-11, Oct. 2017.
[55]G. Nagendra, L. Chen, G. A. Covic, and J. Boys, “Detection of EVs on IPT highways,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 3, pp. 584-597, Sep. 2014.
[56]PIC30F4011 Data Sheet, Microchip Technology Inc., 2004.
[57]HD74LS86P Datasheet, Renesas Inc., 2005.
[58]TLP350 Datasheet, Toshiba Inc.,2003.
[59]IXFH26N50Q Datasheet, IXYS Inc., 2003.
[60]DSEP30-06A Datasheet, IXYS Inc., 2016.
[61]CD4069UB Datasheet, Texas Instruments Inc., 2019.
[62]ARDUINO LLC Inc. Arduino UNO & Genuino UNO.
[63]許永和,介面設計與實習:使用LabVIEW(NI-VISA)(第二版),全華科技圖書股份有限公司,2016。
[64]曹永忠、許智誠、蔡英德,工業基本控制程式設計(RS485串列埠篇),渥瑪數位有限公司,2018。