簡易檢索 / 詳目顯示

研究生: 李隆財
Li, Lung-Tsai
論文名稱: 室內監測應用之熱電堆溫度量測系統
Design of Temperature Measurement Systems with Multielement Thermopile for Indoor Objects Monitoring
指導教授: 楊明興
Young, Ming-Shing
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 81
中文關鍵詞: 表面溫度溫度量測系統非接觸熱電堆紅外線
外文關鍵詞: Infrared, Multielement thermopile, Noncontact, Temperature measurement system, Surface temperature
相關次數: 點閱:104下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溫度量測在家庭及工業應用上是非常重要的,本論文的主要目標是以熱電堆來設計固定平面或大區域兩種溫度量測系統,其中一種是固定平面的表面溫度量測系統(PTMS),另外一種是大區域物體表面溫度監測系統(LRTMS)。
    固定平面溫度量測系統(PTMS)係由熱電堆、微控制器、類比數位轉換器、LCD、LED、蜂鳴器、雷射指示器及編碼旋轉開關組合而成。以LCD顯示器顯示溫度值,LED點亮的顏色表示對應的溫度範圍,以RS-232或無線傳輸介面,將量測溫度值傳送到PC個人電腦,溫度數值及對應的顏色顯示於PC螢幕,蜂鳴器依據設定溫度值發聲警示。本系統為放射率可調、可攜式的多點2D平面溫度量測儀器,有效的溫度量測範圍為–20°C到115°C,視角為41° × 32° (水平×垂直),空間解析度為4 × 4畫素,量測誤差低於±1°C。實驗結果證實本系統可監測固定平面的表面溫度變化。
    大區域溫度監測系統(LRTMS)係由熱電堆、微控制器、類比數位轉換器、步進馬達及微動開關組合而成。以RS-232或無線RS-232介面傳送溫度值,以對應的顏色表示溫度範圍,顯示於PC螢幕上。本系統為大區域的表面溫度分布量測儀器,有效的溫度量測範圍為–20°C到115°C或180°C,3D掃描的空間解析度為40 × 24畫素或64 × 40畫素(水平×垂直),量測距離低於200公分時,可獲致較佳監測效果。實驗結果證實本系統可監測室內物體的表面溫度。
    上述兩種溫度量測系統可應用於分辨電器設備的高溫點、室內裝潢悶燒來源或室內人員的活動等。

    Temperature measurements are very important in domestic and industrial applications. The main aim of this dissertation is to design systems with a multielement thermopile to measure the temperature of a given plane or a large-region. We design two kinds of systems. One (PTMS) is appropriate for measuring the surface temperature of a given plane, while the other (LRTMS) is suitable for determining the surface temperature of indoor objects in the large-region.
    We evaluate the performance of the PTMS, which comprises a thermopile, a microcontroller (MCU), an analog-to-digital converter, a liquid crystal display (LCD), light-emitting diodes (LEDs), a buzzer, laser pointers, and a rotary encoder. We use different types of display devices such as an LCD for displaying the measured temperature and LEDs for indicating the temperature range. An RS-232 interface or a wireless interface is used for transmitting the temperature values to a personal computer (PC) for displaying them in different colors on the monitor. The buzzer/alarm in the system is activated when the threshold temperature is reached. The system is portable and can be used for two-dimensional temperature measurements; further, its emissivity can easily be varied. The effective detection range of this system is from –20°C to 115°C, the field of view is 41° × 32° (horizontal × vertical), and the spatial resolution is 4 × 4 pixels; the measurement error is confined to ±1°C. Experimental results confirm the effectiveness of the system in monitoring the surface temperature of a given plane.
    We also evaluate the performance of the LRTMS, which comprises a thermopile, two MCUs, an analog-to-digital converter, two stepping motors, and four microswitches. We use an RS-232 interface or a wireless RS-232 interface to transmit temperature values and indicate the temperature range on a PC screen. The system can be used for determining the temperature distribution in the large-region. The effective detection range of this system is from –20°C to 115°C (TPAM166L3.9) or 180°C (TPLM086L5.5) and the resolution of 3D scan is 40 × 24 pixels or 64 × 40 pixels (horizontal × vertical). When the distance over which the temperature distribution is determined is lower than 200 cm, the obtained distribution is very accurate. Experimental results confirm the effectiveness of the system in monitoring the surface temperature of indoor objects.
    The designed systems can be used to identify a high-temperature part in electrical heating equipment, a smoldering material hidden in upholstery, or the activities of a person in a room.

    ABSTARACT (Chinese) I ABSTRACT (English) III ACKNOWLEDGEMENTS (Chinese) VI CONTENTS VII LIST OF TABLES IX LIST OF FIGURES X Chapter 1 Introduction 1 Chapter 2 Methods 5 2.1 Detection of thermal radiation 5 2.2 Thermopile sensors 8 2.3 Temperature calculation algorithm 11 2.4 Temperature calibration and mean method 15 2.5 Buzzer sound and color code of temperature threshold 18 Chapter 3 Implementation of systems 19 3.1 Implementation of plane temperature measurement system 19 3.1.1 Implementation of system hardware 20 3.1.2 Implementation of system software 26 3.2 Implementation of large-region temperature monitoring system 33 3.2.1 Implementation of system hardware 34 3.2.2 Implementation of system software 41 Chapter 4 Test results and discussion 46 4.1 Test results and discussion for plane temperature measurement system 46 4.2 Test results and discussion for large-region temperature monitoring system 61 Chapter 5 Conclusions and future work 72 5.1 Plane temperature measurement system 72 5.2 Large-region temperature monitoring system 74 5.3 Future work and potential uses of proposed systems 75 REFERENCES 76 VITA (Chinese) 81

    [1] J. M. Char and J. H. Yeh, “The measurement of open propane flame temperature using infrared technique”, Radiation Transfer, Vol. 56, No. 1, pp. 133-144, 1996.
    [2] M. F. Ugarte, A. J. De Castro, S. Briz, J. M. Aranda, and F. Lopez, “automatic and autonomous infrared system for remote sensing of forest fires”, Review of Scientific Instruments Vol. 71, Issue 10, pp. 3567-3661, Oct. 2000.
    [3] C. F. Tsai, L. T. Li and M. S. Young, “A Detection Method with Multi-band Infrared Technology for Identifying Smoldering Fires”, the 8th Int. Conf. on Auto. Tech. pp. 593-596, May 2005.
    [4] J. J. Yon, E. Mottin, L. Biancardini, L. Letellier, J. L. Tissot, “Infrared Microbolometer Sensors and Their Application in Automotive Safety”, Advanced Microsystems for Automotive Applications, pp. 137-157, 2003.
    [5] T. Tsuji, H. Hattori, M. Watanabe, N. Nagaoka, “Development of Night-Vision System”, IEEE Transactions on Intelligent Transportation Systems, Vol. 3, Issue 3, pp. 203-208, 2002.
    [6] Mark R Stoker, “Measuring temperature”, Anaesthesia & Intensive Care Medicine Vol. 6, Issue 6, pp. 194-198, 2005.
    [7] R. W. Whatmoore, R. Watton, “Pyroelectric materials and devices”, Infrared Detectors and Emitters: Materials and Devices, 2000.
    [8] C. F. Tsai, M. S. Young, “Pyroelectric Infrared Sensor-based Thermometer for Monitoring Indoor Objects”, Review of Scientific Instruments Vol. 74, Issue 12, pp. 5267-5273, Dec. 2003.
    [9] Cascetta, Furio, “Evaluation of the performance of an infrared tympanic thermometer”, Journal of International Measurement Confederation Vol. 16, No. 4, pp.239, Dec. 1995.
    [10] Uwe Has and Dimitar Wassilew, “Temperature Control for Food in Pots on Cooking Hobs”, IEEE Trans. on Industrial electronics Vol. 46, No. 5, Oct. 1999.
    [11] G. Oliveti, N. Arcuri, S. Ruffolo, “Experimental investigation on thermal radiation exchange of horizontal outdoor surfaces”, Building and Environment 38, pp. 83-89, 2003.
    [12] A. Pantinakis and N. Kortsalioudakis, “A Simple High-Sensitivity Radiometer in the Infrared for Measurements of the Directional Total Emissivity of Opaque Materials at Near-Ambient Temperatures”, International Journal of Thermophysics, Vol. 22, No. 6, Nov. 2001.
    [13] Andrew J. Campbell, “Measurement of temperature distributions across laser heated samples by multispectral imaging radiometry”, Review of Scientific Instruments Vol. 79, 15108, 2008.
    [14] Haibo Fan, Nanda K. Ravala, Howard C. Wikle, Bryan A. Chin, “Low-cost infrared sensing system for monitoring the welding process in the presence of plate inclination angle”, Journal of Matrials Proceeding Technology Vol. 140, pp. 668-675, 2003.
    [15] L. Fonseca, F. Perez-Murano, C. Calaza, R. Rubio, J. Santander, E Figuersa, I. Cracia, C. Cane, M. Moreno, S. Marco, “ Thermal AFM: a thermopile case study”, Ultramicroscopy a10, pp. 153-159, 2004.
    [16] M. Liess, M. Hausner, J. Schilz, G. Lauck, H. Karagoezoglu, H. Ernst, “Temperature Radiation Sensors for Automotive Climate Control”, Sensors, Proceedings of IEEE, Vol. 1, pp. 5-7, Oct. 2004.
    [17] D. Linzmeier, M. Mekhaiel, J. Dickmann, and K. Dietmayer, “Pedestrian detection with thermopiles using an occupancy grid”, in IEEE Int. Transportation Sys. Conf., 2004.
    [18] Dirk T. Linzmeler, Dominik Vogt, Rajan Prasanna, Moheb Mekhaiel, Klaus C. J. Dietmayer, “ Probabilistic Signal Interpretation Methods FOR a Thermopile Pedestrain Detection System”, IEEE 2005.
    [19] N. Yoshiike, K. Morinaka, K. Hashimoto, M. Kawaguri, “360° direction type human information sensor”, Sensors Actuators 77, pp. 199, 1999.
    [20] Danijela Randjelovic, Anastasios Petropoulos, Grigoris Kaltsas, Milo? Stojanovic, “Multipurpose MEMS thermal sensor based on thermopiles”, Sensors & Actuators: A. Physical, Vol. 142, Issue 2, pp. 404-413, 2008.
    [21] Haibo Fan, Nanda K. Ravala, Howard C. Wikle, Bryan A. Chin, “Low-cost infrared sensing system for monitoring the welding process in the presence of plate inclination angle”, Journal of Materials Processing Tech., Vol. 140, Issue 1-3, pp. 668-675, 2003.
    [22] M. Tsuji, N. Ohkubo, M. Saito, A. Asaoka, M. Hirota, “A Study on Occupant Surface Temperature Detection for a Personal Air-conditioning System”, Proceeding of J of SAE, 5648, pp. 23-26, 2005.
    [23] John M. Baker, John M. Noman, Atsushi Kano, “A new approach to infrared thermometry”, Agricultural and Forest Meteorology 108, pp. 281-292, 2001.
    [24] Stefan Datcu, Laurent Ibos, Yves Candau, Simone Mattei, “Improvement of building wall surface temperature measurements by infrared thermography”, Infrared Physics & Technology 46, pp. 451-467, 2005.
    [25] W. L. Wolfe, G. J. Zissis, “The infrared handbook”, IRIA Center, 1978.
    [26] E. L. Dereniak, D. G. Crowe, “Optical Radiation Detectors”, Wiley, 1984.
    [27] G. Gaussorgues, S. Chomet, “Infrared Thermography”, Chapman & Hall, 1994.
    [28] E. L. Dereniak, G. D. Boreman, “Infrared Detectors and Systems”, John Wiley & Sons, 1996.
    [29] R. Pallas-Areny and J. G. Webster, “Sensors and Signal Conditioning”, Second Edition, John Wiley & Sons Press, New York, 2001.
    [30] A. Rogalski, K. Chrzanowski, “Infrared devices and techniques”, Opto-electronics Review, Vol. 10, Issue 2, pp. 111-136, 2002.
    [31] A. W. Van Herwaarden, P. M. Sarro, “Thermal sensors based on the seebeck effect”, Sensors and Actuators, 10 (3-4), pp. 321-346, 1986.
    [32] T. J. Bajzek, “Thermocouples: a sensor for measuring temperature”, Instrumentation & Measurement Magazine, IEEE, Vol. 8, Issue 1, pp. 35-40, 2005.
    [33] TPAM166L3.9, Thermopile Matrix Array Module with 4×4 Elements. Available from: http://optoelectronics.perkinelmer.com/content/datasheets/dts_tpam166l39.pdf
    [34] Preliminary Sample Specification: Thermopile Array Sensors, Perkin Elmer. Available from: http://www.radioastrolab.it/ra/doc_pdf/TMParray.pdf
    [35] J. Schilz, ”Thermoelectric infrared sensors (thermopiles) for remote temperature measurements: pyrometry”, PerkinElmer Optoelectronics, 1999.
    [36] Jurgen Schilz, “Applications of Thermoelectric Infrared Sensors: Gas Detection by Infrared Absorption; NDIR”, PerkinElmer Optoelectronics, version 22 Aug. 2000.
    [37] D.C Ripple, “Temperature Measurement”, Instrumentation & Measurement Magazine, IEEE, Vol. 5, Issue 3, pp. 74-75, 2002.
    [38] D.C Ripple, “Traceable Temperatures: An Introduction to Temperature Measurement and Calibration”, Instrumentation & Measurement Magazine, IEEE, Vol. 5, Issue 3, pp. 75-76, 2002.
    [39] L. T. Li and M. S. Young, ”Design of a 16×16 RGB Full Color LED Module”, Proceedings of the Second Intelligent Living Technology Conference (ILT2007), pp.728-731, Jun. 2007.
    [40] L. T. Li, C, F. Tsai, and M. S. Young, “ Design and Implementation of a System with a Multielement Thermopile for Monitoring Temperature of a Plane”, Review of Scientific Instruments, Vol. 80, Issue 4, 45111, Apr. 2009.
    [41] L. T. Li, C. F. Tsai, and M. S. Young, ”Design of an Indoor Temperature Monitoring System”, Proceedings of the fourth Intelligent Living Technology Conference (ILT2009), Jun. 2009.
    [42] K. Chrzanowski, “Influence of object-system distance on accuracy of remote temperature measurement with IR systems”, Infrared Physics and Technology, Vol. 36, Issue 3, pp. 703-713, 1995.

    下載圖示 校內:2014-08-06公開
    校外:2014-08-06公開
    QR CODE