簡易檢索 / 詳目顯示

研究生: 吳祥煜
Wu, Hsiang-Yu
論文名稱: 台灣海域實測雙峰波譜模型之研究
A Study on Bimodal Spectrum Fitting for Taiwanese Waters
指導教授: 董東璟
Doong, Dong-Jiing
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 76
中文關鍵詞: 雙峰譜模型湧浪套配浮標
外文關鍵詞: Bimodal, Spectrum model, Swell, Fitting, Data buoy
相關次數: 點閱:91下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海洋中常同時存在風浪和湧浪,在頻率域上,這種交錯海象常以雙峰譜形式表現。本研究分析台灣周圍海域的雙峰波譜發現,雙峰譜出現的頻率約為8.8%,當雙峰譜出現時,平均波高為1.66m,較常年平均約低15%,顯示交錯環境下波高發展受限。同時,本研究也發現雙峰譜並非只出現在颱風期間,非颱風期間的雙峰譜出現頻率更高。為了模式化雙峰波譜,本研究利用四個前人提出的雙峰波譜模型:六參數譜(SP model)、Guedes Soares譜(GS model)、Torsethaugen譜(TT model)、Mackay譜(MK model),套配到實測雙峰譜,結果顯示六參數譜有最佳表現。然而,分析發現模型套配過程中,當海況中湧浪能量超過風浪能量的50%以上,以及兩波峰頻率差小於0.09 Hz等條件下,前人的雙峰譜模型容易變形簡化為單峰譜,此結果並不合理,因此本研究嘗試提出新的譜模型。本文先證實了高斯分布適合來表示湧浪成分波譜,而對於風浪成分則使用JONSWAP-Glenn形式的譜模型,結合兩者成為一個新型雙峰波譜模型,本文稱之為GJ譜。透過實測數據的比對分析,根據六個評鑑參數,證實本文所提的GJ譜模型表現優於前人所提的幾個模式,與SP譜模型比較,雙峰譜變形簡化為單峰譜的比率由6%降至3%,本研究提出了一個表現更好的雙峰譜模型。

    Co-exist of wind wave and swell is common in the real ocean. In frequency domain, this crossing sea is expressed by a bimodal spectrum. This study works on the bimodal analysis for Taiwanese Waters. It is found the occurrence probability of bimodal is only 8.8%. The significant wave height in bimodal sea state 1.66m is 15% lower than annual average wave height. In addition, bimodal has higher occurrence probability in non-typhoon condition. To formulate the bimodal spectra, four models presented by previous researchers are evaluated. They are Six-Parameters Spectrum Model, Guedes Soares Spectrum Model, Torsethaugen Spectrum Model and Mackay Spectrum Model. The candidate models are fitting to real bimodal spectra. The best model is the Six-Parameters Spectrum Model according to several evaluation parameters. However, it is found the bimodal spectrum deformed to uni-modal when swell energy above 50% of wind wave energy and the frequency difference less than 0.09 Hz. This is unreasonable. This study proposed a new model that is composed of a Gaussian function and a JONSWAP-Glenn model. This new model has been verified by field data and proofed to have better performance. The deformation rate reduces from 6% to 3% by using the proposed model. This study proposed a useful bimodal spectrum model for future application.

    目錄 致謝 I 摘要 III ABSTRACT IV 目錄 XI 圖目錄 XIII 表目錄 XVI 第一章 前言 1 1-1 背景介紹 1 1-2 前人研究 3 1-3 研究目的 7 1-4 本文架構 8 第二章 雙峰波譜模型 9 2-1 六參數譜模型(SP MODEL) 9 2-2 GUEDES SOARES模型(GS MODEL) 13 2-3 TORSETHAUGEN模型(TT MODEL) 17 2-4 MACKAY模型(MK MODEL) 23 第三章 波譜模型套配分析 29 3-1 現場分析資料 29 3-2 雙峰波譜案例挑選與分析 32 3-3 套配方法與結果 41 3-4 出現之問題 48 第四章 新型雙峰波譜模型 57 4-1 湧浪成分譜模型 57 4-2 風浪成分譜模型 63 4-3 模型驗證與討論 63 第五章 結論與建議 70 參考文獻 72

    [1] 吳柏鋒,2012. 「台灣西南海域湧浪觀測研究」,國立中山大學海下科技暨應用海洋物理研究所碩士論文。
    [2] 梁乃匡,1985. 「颱風波浪波譜的估計」,港灣技術第一期,第1~6頁。
    [3] 許城榕,2012. 「有限水深波譜中作業化波浪系統的劃分與識別」,國立中山大學海洋環境及工程學系研究所碩士論文。
    [4] 俞聿修,2002. 「隨機波浪及其工程應用」,國立成功大學近海水文中心,台灣。
    [5] 賴如鈺,2015. 「深海浮標颱風波譜特性之研究」,國立台灣海洋大學海洋環境資訊系碩士學位論文。
    [6] Amurol, S., Ewans, K., and Sheikh, R., 2014. “Measured wave spectra offshore Sabah & Sarawak, Malaysia.” Annual Offshore Technology Conference.
    [7] Boukhanovsky, A.V. and Guedes Soares, C., 2009. “Modelling of multipeaked directional wave spectra.” Applied Ocean Research, Vol. 31, pp. 132-141.
    [8] Bouws, E., Günther, H., Rosenthal,W., and Vincent, C.L., 1985. “Similarity of the wind wave spectrum in finite depth water 1. Spectral form.” Journal of Geophysical Research., Vol. 90, No. C1, pp. 975-986.
    [9] Doong, D.J., Chen, S.H., Kao, C.C., Lee, B.C., and Yeh, S.P., 2007. “Data quality check procedures of an operational coastal ocean monitoring network.” Ocean Engineering, Vol. 34, pp. 234-246.
    [10] Glenn, S., 1992. “Confidential Internal Shell Report.”.
    [11] Goda, Y., 1970. “Numerical Experiments on Wave Statistics with Spectral Simulation.” Report of the Port and Harbour Research Institute, Vol. 9, No. 3, pp. 1-57.
    [12] Goda, Y., 1983. “Analysis of wave grouping and spectra of long-travelled swell.” Report of the Port and Harbour Research Institute, Vol. 22, No. 1.
    [13] Goda, Y., 2000. “Random Seas and Design of Maritime Structures. (2nd ed.)” World Scientific, Singapore, 1–443.
    [14] Guedes Soares, C., 1984. “Representation of double-peaked sea wave spectra.” Ocean Engineering., Vol. 11, No. 2, pp. 185-207.
    [15] Hanson, J.L., and Phillips, O.M., 2001 “Automated analysis of ocean surface directional wave spectra.” J. Atmos. Oceanic Technol., Vol. 18, pp. 277-293.
    [16] Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D.J., Richter, K., Sell, W., and Walden, H., 1973. “Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP).” Dtsch. Hydrogr. Z., 12 (Suppl. A8), pp. 1–95.
    [17] Huang, N.E., Long, S.R., Tung, C.C., and Yuen, Y., 1981. “A unified two-parameter wave spectral model for a general sea state.”, J. Fluid Mech. Vol. 112, pp. 203-224.
    [18] Hu, K. and Chen, Q., 2011. “Directional spectra of hurricane-generated waves in the Gulf of Mexico.” Geophysical Research Letters, Vol. 38, L19608.
    [19] Hwang, P.A., Ocampo-Torres, F.J., and García-Nava, H., 2012. “Wind sea and swell separation of 1D wave spectrum by a spectrum integration method.” J. Atmos. Oceanic Technol., 29, pp. 116–128.
    [20] Kitaigorodoskii, S.A., 1961. “Application of the theory of similarity to the analysis of wind-generated wave motion as a stochastic process.” Izv. Akad. Nauk. SSSR, Ser. Geophys., Vol. 1.
    [21] Kitaigorodoskii, S.A., Krasitskii, V.P., and Zaslavskii, M.M., 1975. “On Phillips theory of equilibrium range in the spectra of wind-generated gravity waves.” J. Phys. Oceanography., Vol. 5, pp. 410-420.
    [22] Kumar, V.S., Dubhashi, K.K., and Balakrishnan, Nair, T.M., 2014. “Spectral wave characteristics off Gangavaram, Bay of Bengal.” Journal of Oceanography, Vol. 70, Issue 3, pp. 307-321.
    [23] Lee, Y.C., 2017. “Wind wave and swell separation from directional wave spectrum – the Duration-limited method.” Department of Hydraulic and Ocean Engineering Master Thesis, NCKU.
    [24] Lucas, C., Boukhanovsky, A.V., and Guedes Soares, C., 2011. “Modeling the climatic variability of directional wave spectra.” Ocean Engineering, Vol. 38, pp. 1283-1290.
    [25] Lucas, C., and Guedes Soares, C., 2015. “On the modelling of swell spectra.” Ocean Engineering, Vol. 108, pp. 749-759.
    [26] Mackay, Ed, 2016. “A unified model for unimodal and bimodal ocean wave spectra.” International Journal of Marine Energy, Vol. 15, pp. 17-40.
    [27] Neumann, G., 1953. “On ocean wave spectra and a new method of forecasting wind-generated sea.” Beach Erosion Board. U.S. Army Corps. Of Engineers, Tech. Mem., No. 43, 42 pp.
    [28] Ochi, M.K. and Hubble, E.N., 1976. “Six-parameter wave spectra.” Coastal Engineering Proc. 15th Coastal Engineering Conference ASCP, pp. 321-328.
    [29] Olagnon, M., Ewans, K., Forristall, G., and Prevosto, M., 2013. “West Africa swell spectral shapes.” ASME 2013 32nd International Conference on Ocean & Offshore and Arctic Engineering.
    [30] Phillips, O.M., 1958. “The Equilibrium range in the spectrum of wind-generated waves.” J. Fluid Mech., Vol. 4(4), pp. 426-434.
    [31] Pierson, W.J., 1952. “A unified mathematical theory for the analysis Propagation and Refraction of Storm Generated Ocean Surface Waves.” Part I and II. NYU, College of Engineering, Research Division, Department of Meteorology and Oceanography.
    [32] Pierson, W.J. and Moskowitz, L., 1964. “A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii.” J. Geophys. Res., 114, pp. 5181-5190.
    [33] Portilla, J., Ocampo-Torres, F.J., and Monbaliu, J., 2009. “Spectral partitioning and identification of wind sea and swell.” Journal of Atmospheric and Oceanic Technology, Vol. 26, pp. 107-122.
    [34] Rice, S.O., 1944. “Mathematical analysis of random noise.” The Bell System Technical Journal, Vol. 23(3), pp. 282-332.
    [35] Rice, S.O., 1945. “Mathematical analysis of random noise.” The Bell System Technical Journal, Vol. 24(1), pp. 46-156.
    [36] Strekalov, S.S., Tsyploukhin, V.P., and Massel, S.T., 1972. “Structure of sea wave frequency spectrum.” Proc. 13th Coastal Eng. Conference, Vol. 1.
    [37] Torsethaugen, K., 1993. “A two peak wave spectrum model.” Proceedings OMAE. Vol. 2.
    [38] Torsethaugen, K., and Haver, S., 2004. “Simplified double peak spectral model for ocean waves.” The 14th International Offshore and Polar Engineering Conference.
    [39] Yang, W. H., 1993. “Breaking wave spectrum and set-down set-up in shallow water.” Journal of Marine Science and Technology., Vol. 1, No. 1, pp. 73-79.

    下載圖示 校內:2020-01-01公開
    校外:2021-01-01公開
    QR CODE