簡易檢索 / 詳目顯示

研究生: 簡思甄
Jian, Sih-Jhen
論文名稱: 利用硒化與分層電鍍形成二硒化銅銦薄膜的研究
Growth of CIS thin film by selenization of layer by layer plated metallic precursors
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 101
中文關鍵詞: 二硒化銅銦電鍍
外文關鍵詞: CuInSe2, electrodeposition
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是利用成本較低且製程較簡單之電鍍方式取代傳統的物理氣相沉積法來製備二硒化銅銦(CuInSe2)薄膜太陽能電池之吸收層於可撓式的不鏽鋼基板上。
    有別於一般文獻上常見到以共電鍍的方式製備CIS吸收層,本實驗先使用分層電鍍的方式形成Cu/In之先驅層(precursor layers),再以蒸鍍硒化的方式形成最終的CIS吸收層。先驅層Cu以及In的組成比例可藉由膜厚來控制,經過硒化製程後能達到CIS吸收層的標準化學計量比(Cu:In:Se=1:1:2),製備出高品質的CuInSe2主吸收層。CIS薄膜製作完成後再以XRD,EDS,SEM等儀器分析。
    最後成功作出具有轉換效率的薄膜太陽能電池,由電流-電壓特性曲線可以觀察出,該元件具有顯著之二極體特性,量測數據Voc=0.03V、Isc=2.63mA、F.F.=22 %、η=0.23%。

    In this thesis, we adopt the economical and novel electrodeposition process to fabricate CuInSe2 as the absorbent layer on the flexible stainless substrate for thin film solar cell applications.
    In this work, the electrodeposition of Cu and In with layer by layer structure is being as precursor layers. Then the selenization process is performed by evaporation method to form the CuInSe (CIS) absorbent layer. The composition ratio of the precursor layers can be well-controlled by the thickness of films. Hence, the high quality CuInSe2 absorbent layer can be formed with the atomic ratio of 1: 1: 2, respectively. Sequentially, the analytical instrumentations of XRD, EDS, and SEM are applied to characterize the CIS thin films.
    Finally, we successfully demonstrate the thin film solar cells with transforming efficiency. The devices have the evident I-V characteristics of the diodes. The measurement results of photovoltaic behaviors are the open-circuit voltage (Voc) of 0.03V, the short-circuit current (Isc) of 2.63mA, the filled-factor (F.F.) of 22% and the efficiency (η) of 0.23%, respectively.

    中文摘要.........................................I 英文摘要.................................................II 致謝............................................III 目錄.....................................................IV 表目錄...........................................VIII 圖目錄.................................................IX 第一章、 緒論.............................................1 1-1 太陽能之需求...........................................1 1-2 太陽能電池簡介.....................................2 1-3 實驗動機及目標........................................7 第二章、原理..............................................9 2-1 太陽能電池原理........................................9 2-1-1 太陽能電池的物理機制.............................9 2-1-2 太陽能電池的電路模型.............................11 2-1-3 太陽能電池的電性量測............................13 2-1-4 太陽光譜........................................14 2-2 CuInSe2薄膜太陽能電池.................................16 2-2-1 CuInSe2薄膜材料特性與晶體結構...................16 2-2-2 CuInSe2常見的鍍製方式...........................22 2-2-3 CuInSe2薄膜太陽能電池元件架構..................26 1.鈉玻璃基板、可撓式基板......................27 2.鉬金屬(Mo)背電極.............................30 3.CIS主吸收層.............................30 4.CdS/ZnS緩衝層.............................31 5. i-ZnO純質氧化鋅層............................32 6. 透明導電氧化層(Transparent conducting Oxide)32 7.Al/Ni前電極............................. 33 2-3 電化學簡介...........................................33 2-3-1 電鍍基本裝置及電鍍系統..........................33 2-3-2 電鍍基本原理.........................................35 2-3-3 循環伏安法(Cyclic Voltammetry).......37 2-3-4 定電位電解法(Chronoamperometry).....37 2-3-5 定電流電解法(Chronopotentiometry)..38 2-3-6法拉第定律.......................................38 2-3-7電鍍的膜厚計算...................................39 第三章、實驗...........................................41 3-1 實驗所需材料、化學藥品及實驗設備之介紹...............41 3-1-1 實驗用材料、藥品及實驗設備規格........42 3-1-2 電鍍系統.......................................42 3-1-3 濺鍍系統.......................................44 3-1-4 蒸鍍系統.......................................46 3-2 實驗流程.............................................47 3-2-1 實驗流程圖.....................................47 3-2-2 不鏽鋼基板之清洗...............................48 3-2-3 濺鍍Mo背電極..................................49 3-2-4 分層電鍍Cu/In先驅層(precursor layer)50 3-2-5 硒化.............................................52 3-2-6 化學水域法鍍製ZnS.............................52 3-2-7 鍍製AZO及前電極..............................54 3-2-8 前電極Ag製作..............................56 3-3 分析儀器原理介紹.....................................57 3-3-1 掃瞄式電子顯微鏡(SEM)...........57 3-3-2 能量分散式光譜儀(EDS)...........59 3-3-3 X光繞射儀(XRD)..................59 3-3-4吸收光譜儀...............................63 3-3-5 太陽光模擬器與IV量測系統...........63 第四章、實驗結果與討論...................................64 4-1 單一元素的循環伏安法分析.............................64 4-2先驅層成份控制之最佳化與CuInSe2吸收層 之製備...............................................69 4-2-1 厚度比Cu:In=1:2.2......................70 4-2-2 厚度比Cu:In=1:4........................74 4-2-3 厚度比Cu:In=1:3......................77 4-2-4 蒸鍍硒化製程使用新的K-CELL.............82 4-3 化學水域法鍍製CdS...................................84 4-4濺鍍AZO及前電極Al...................................86 4-5 元件之製作及效率量測.................................88 4-6元件之改善及效率量測.................................90 第五章、結論.............................................93 參考文獻.................................................95

    【1】 A. Luque and S. Hegedus, “Handbook of photovoltaic since and Enginerring”, John Wiley &Sons (2003).

    【2】 M.A, “Limiting efficiencies for photovoltaics solar conversion in multigap systems”, Solar energy materials and Solar cells, 43, p.203-222,(1996).
    【3】 M.A. Green, “ Photovoltaics:technology overview”, Energy Policy, 28, p.606-616, (2000).

    【4】 I. Repins, M.A. Contreras, B. Egaas, C. DeHart, John Scharf, Craig L. Perkins, Bobby To and Rommel Noufi, Progress in Photovoltaics: Research and Applications 16, p.235, 2008.

    【5】 H.W. Schock and Rommel Noufi, Progress in Photovoltaics: Research and Applications 8, p.151-160, 2000.

    【6】 K. Otte , L. Makhova , A. Braun , I. Konovalo ,“ Flexible Cu(In,Ga)Se2 thin-film solar cells for space application”, Thin Solid Films, 511-512, p. 613-622, (2006).
    【7】 G.M. Hanket, U.P.S., E. Eser, W. N. ShaFaran, R. W. Birkmire, Photovoltaic Specialists Conference. Proceedings of the 29th IEEE, 567, (2002).
    【8】 戴寶通、鄭晃忠,太陽能電池技術手冊,台灣電子材料與元件協會, 2007.
    【9】 S. M. Sze, “ Semiconductor Devices Physics and Technology” , 2nd ed, John Wiley & Sons New York, (2002).
    【10】 S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices”, iley-Interscience: John Wiley & Sons, third ed. (2007).
    【11】 楊德仁,太陽能電池材料,五南圖書出版公司,2008
    【12】 J .Yang, “Recent progress in amorphous silicon alloy
    leading to 13% stable cell efficiency”, photovoltaics, p. 563-568,
    (1997).

    【13】 胡振國, 光伏電池-漸趨重要,光訊, 1999.
    【14】 曾百亨, CuInSe2 薄膜太陽電池, 光訊, 1997.
    【15】 K.W. Mitchell ,” CuInSe2 cells and modules”, IEEE transaction
    on electron devices, 37(2), p. 410-417, (1990).
    【16】 B. Mmler, M. Powalla, and H.W. Schock,” CIS-based thin film
    photovoltaic modules”, Prog. Photovolt: Res.Appl, 10,
    p.149-157, (2002).
    【17】W. Eisele, E.P. Jacobs, I. Eisele, G. Dorda, ”Electron mobility in
    Si-mosfets with an additional implanted channel”, Institute of
    Electrical and Electronics Engineers, p.692-695,( 2000).
    【18】C. Guillen and J. Herrero, “ Optical properties of electrochemically
    deposited CuInSe2 thin films”, Solar Energy Materials,23: p.31,
    (1991).
    【19】K. Zweibel, B. Jackson and A. Hermann,” Comment on critical
    materials assessment program”, Solar Cells, 16, p.631, (1986).
    【20】 R. W. Birkmire, L. C. Dinetta, P. G. Lasswell, J. D. Meakin and J.
    E. Phillips,” High efficiency CuInSe2 based heterojuction soalr
    cells : Fabrication and results”, Solar Cells, 16: p.419, (1986).
    【21】L. Thouin,J. Vedel, ”Electrodeposition and Characterization of
    CulnSe2 Thin Films”, The Electrochemical Society, P.2996-3001,
    (1995).
    【22】R.W. Birkmire,E. Eser, “ POLYCRYSTALLINE THIN FILM
    SOLAR CELLS: Present Status and Future Potential”, Annual
    Review of Materials Science, 27, P.627, (1997).

    【23】R. N. Bhattacharya and J. Keane,” Electrodeposition and
    characterisation of CuInSe2 for applications in thin film solar
    cells”, Electrochem.Soc,143, p.854, (1984).
    【24】R. N. Bhattacharya , P. J. Sebastian and X . Mathew , “ Preparation
    and characterization of copper indium deselnide films by
    electroless deposition”, Solar Energy Materials and Solar Cells, 63,
    p.316, (2000).
    【25】P. J. Sebastian, E. Calixto, A. Fernandez, “ Electro/electroless
    deposition and characterrization of Cu-In precursors for CIS
    films”, Crystal Growth, 169, p.287, (1996).
    【26】R. Friedfeld, R. P. Raffaelle, J. G. Mantovani, “ Electrodeposition of
    CuInxGa1-xSe2 thin films”, Solar Energy Materials & Solar Cells,
    58, p.375-385, ( 1999).
    【27】J.W. Chu, D. Honeman,” Degradation processes in polycrystalline
    copper indium diselenide photoelecrochemical cells”, Solar
    cells, 31, p. 197, (1991).
    【28】J. L. Shay, B. Tell, H. M. Kasper and L. M. Schiavone, Phys. Rev.
    7, p.4485, (1973).
    【29】R. A. Mickelsen and M. S. Chen, Appl. Phys. Lett, 26, p.5,( 1980).
    【30】B. Pamplin and R. S. Feigelson,” Spary pyrolysis of CuInSe2 and
    related ternary semiconducting compounds”, Thin Solid Films, 60,
    p. 144, (1979).
    【31】S. P. Grindle, A. H. Clark, S. R.Serej, J. Mcneily, L. L.
    Mcneily,”The effects of doping sb on properties of CuInSe2
    thin-film solar cells”, Applied Physics, 51, p. 10, (1980) .
    【32】N. Romeo, V. Canevari, G. Sberveglieri, A. Bosio,” Growth of
    Large-Grain CuInSe2 Thin Films by Flash-Evaporation and Sputtering”, Solar Cells, 16, p.155-164, (1986).
    【33】R. K. Pandey, S. N. Sahu and S. Chandra,” Handbook of
    Semiconductor Electrodeposition”, Marcel Dekker, New
    York, (1996).
    【34】D. Pottier and G. Maurin, “ Preparation of polycrystalline thin
    films of CuInSe2 by electrodeposition”, Appl. Electrochem, 19,
    p.361, (1989).
    【35】R. N. Bhattacharya, A.M. Fernandez, “CuIn1-xGaxSe2-based
    photovoltaic cells from electrodeposited precursor films”, Solar
    Energy Materials &Solar Cells, 76, p. 331-337, (2003).
    【36】A. Kampmann , V. Sittinger, J. Rechid, R. Reineke-Koch ,”
    Large area electrodeposition of Cu(In,Ga)Se2”, Thin Solid Films,
    361-362, p.309-313, 2000.
    【37】D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock, “
    Influence of sodium on the growth of polycrystalline
    Cu(In,Ga)Se2 thin films”, Thin solid films, 361-362, p.161-166,
    (2000).
    【38】M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter, H.
    W.Schock, “Influence of Substrates on the Electrical Properties of
    Cu(In,Ga)Se2 Thin Films”, 1st World Conference on Photovoltaic
    Energy Conversion, p.156-159, (1994).
    【39】T.J. Vink, M.A.J. Somers, J.L.C. Daams, A.G. Dirks, “Stress,
    strain, and microstructure of sputter-deposited Mo thin films”,
    applied physics, 70, p. 4301-4308, (1991).
    【40】R. Wuerz, A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla,
    P.Rogin, O.Yazdani-Assl,” CIGS thin-film solar cells on steel
    substrates”, Thin Solid Films, 517, p.2415-2418 ,(2009).
    【41】M. Bar, W. Bohne, J. Rohrich, E. Strub, S. Linder, M. C.
    Lux-Steiner,and Ch.-H.Fischer, T.P.Niesen, F.Karg, Appl.
    Phys, 7, p. 3858, (2004).
    【42】A. Romeo, M.Terheggen, D.Abou-Ras, D.L.Batzner, F.-J.Haug,
    M.Kalin, D.Rudmann and A. N. Tiwari, Prog. Photovolt: Res.

    Appl., 12, p. 97 , (2004).
    【43】F. Capasso, and G. Maragaritondo, “Heterojunction band
    iscontinuities: Physics and device application”, Elsevier science,
    (1987).
    【44】B.G. Streetman, S.K. Banerjee, “Solid state electron devices,6th
    edition ”, Pearson Prentice Hall ,New Jersey, 2006.
    【45】I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L.
    Perkins, B. To , R. Noufi, “Short Communication: Accelerated
    Publication 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with
    81.2% fill factor”, Photovoltaics: Research and Applications,16,
    p. 235, (2008).
    【46】R.N. Bhattacharya and K. Ramanathan,” Cu(In,Ga)Se2 thin film
    solar cells with buffer layer alternative to CdS” , Solar Energy,
    77, p.679-683,( 2004).
    【47】R. Schaffler, H.W. Schock, “High mobility ZnO:Al thin films
    grown by reactive DC magnetron sputtering”, CONFERENCE
    RECORD IEEE ,(1993).
    【48】尤光先, 電鍍工程學. 徐氏基金會出版, 1976.
    【49】賴耿陽, 實用電鍍技術全集, 復漢出版社, 1981.
    【50】R. Friedfeld1, R.P. Raffaelle, J.G. Mantovani,” Electrodeposition
    of CuInxGa1-xSe2 thin films”, Solar Energy Materials & Solar
    Cells, 58, p. 375-385, (1999).
    【51】F.S. Hasoon, Y. Yan, H. Althani, K.M. Jones, H.R. Moutinho, J.
    Alleman, M.M. Al-Jassim, R. Noufi, “ Microstructural properties
    of Cu(In,Ga)Se2 thin films used in high-efficiency devices”,
    Thin solid films, 387, p. 2, (2001).
    【52】Q. Liu, G. Mao, J. Ao, “ Chemical Bath Deposited ZnS Thin Films:
    Preparation and Characterization”, Applied Surface Science,
    p.5711-5714, (2008).
    【53】陳力俊等編著,材料電子顯微鏡學,儀科中心出版
    【54】Naglaa Fathy, R.K., Masaya Ichimura,” Preparation of ZnS thin
    films by the pulsed electrochemical deposition”, Materials
    Science and Engineering, 107, p. 271-276, (2004).
    【55】M. E. Calixto, R. N. Bhattacharya, P. J. Sebastian, A. M.
    Fernandez, S. A.Gamboa, R. N. Noufi, “Cu(In,Ga)Se2 based
    photovoltaic structure by electrodeposition and processing”, Solar
    Energy Materials and Solar Cells, 55, p.23-29, (1998).
    【56】許樹恩,吳泰伯, X 光繞射原理與材料結構分析, 中國材料學
    會,新竹, p.169, (1996).

    無法下載圖示 校內:2015-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE