簡易檢索 / 詳目顯示

研究生: 陳奇宏
Chen, Che-Hong
論文名稱: 高效率弦波轉換之遞迴演算法
Effective Recursive Algorithms for Discrete Sinusoidal Transforms
指導教授: 楊家輝
Yang, Jar-Ferr
劉濱達
Liu, Bin-Da
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 125
中文關鍵詞: 遞迴弦波轉換
外文關鍵詞: Recursive, Discrete Sinusoidal Transforms
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是針對一般的離散弦波轉換提出高效率之遞迴架構演算法。由於無限脈衝響應(IIR)濾波器架構花費較多的計算時間完成遞迴運算,同時造成嚴重的取捨誤差,對於多維度的計算,更需搭配暫存記憶體來完成計算,因此,針對以上缺點與IIR濾波器架構的特性,我們做深入的分析與討論,進一步對一維與多維度離散弦波轉換提出高效率之遞迴架構演算法。
    一維離散弦波轉換方面,首先我們提出定係數遞迴架構演算法,利用自訂的modulo技巧,此演算法可用來計算任意長度離散弦波轉換。基於原始資料的交換排列、符號改變與零值內插,此架構比其他定係數演算法所需的計算迴圈更少。在有限字元長度的計算器,適當調整遞迴濾波器的係數,可得到更準確的結果。此外,我們又提出高輸出率遞迴架構演算法,利用對摺的技巧,可減少遞迴運算的次數。實驗結果顯示,因為所提出的定係數與高輸出率遞迴架構演算法需要較少的計算迴圈,同時擁有較高的輸出率,所以可得到較準確的結果。此外,所提架構可適用於一維DCT/IDCT、MDCT/IMDCT、分頻合成濾波轉換(Subband synthesis filter)。
    多維離散弦波轉換方面,我們提出高效率之精簡遞迴架構,利用三角函數公式與數論,由探討形成一完全剩餘系統的週期性轉換基底,發展出需要較少之遞迴運算迴圈的精簡離散餘弦轉換遞迴架構演算法。此演算法最大的特點是不需要暫存記憶體即可直接計算多維度的離散餘弦轉換,因此可以在較少的功率消耗與存取時間的優點下,得到精確的結果。模擬結果亦顯示所提的精簡遞迴架構演算法比用row-column方法實現的一維遞迴演算法有較高的PSNR值。此外,規則的架構有利於VLSI的實現,利用相似的推導原理,此演算法更可以發展成多維度離散正弦轉換遞迴架構。

    In this dissertation, we propose the effective recursive algorithms for discrete sinusoidal transforms, which can be realized as the infinite impulse response (IIR) filters. Regarding to the IIR filtering structure, the longer computational time, larger round-off error and the requirement of transposition memory for multi-dimensional discrete sinusoidal transform are the drawbacks. According to the properties of the IIR filter, some techniques are developed to overcome above disadvantages. Furthermore, the effective recursive algorithms for one-dimensional and multi-dimensional discrete sinusoidal transforms are respectively addressed.
    For one-dimensional discrete sinusoidal transforms, such as MDCT/IMDCT, DCT/IDCT, DST/IDST and subband analysis/synthesis filter, fixed-coefficient recursive structure and high-throughput recursive structure are proposed to provide the high effective and more accurate IIR filtering structures. Applying the proposed modified modulo technique, the fixed-coefficient recursive structures for computing the general length discrete sinusoidal transforms, which are simplified and converted into the simpler DCT, are developed. Based on permutation, sign change and zero insertion of original inputs, the proposing filtering structures required fewer recursive cycles than the previous fixed-coefficient algorithms. Furthermore, by selecting the optimal coefficient, the IIR filtering structures can achieve more accurate results. On the other hand, applying the data-folding technique, the high-throughput recursive formulas, which require fewer recursive cycles to complete computation, are addressed. The proposed fixed-coefficient and high-throughput recursive algorithms require fewer computational cycles and achieve higher data throughput per transformation than the existing methods. The simulation results show that fewer computational cycles and higher data throughput will effectively result in smaller round-off error.
    For multi-dimensional discrete sinusoidal transform, such as multi-dimensional DCT/IDCT, condensed recursive structures are proposed to provide effective and accurate IIR filtering structures. Using trigonometric identities and number theory, the condensed recursive structures requiring fewer recursive loops are developed from exploration of periodicity embedded in transform bases. The most significant feature of the proposed algorithm is that the transformation is computed directly without using any transposition memory. Hence, the proposed algorithm achieves more accurate results with less power consumption and smaller access time. Simulation results verify that the proposed algorithm provides higher average PSNR’s and throughput than other algorithms using the traditional row-column method. In addition, due to the less computational complexity, the proposed algorithm is suitable for VLSI implementation. Using the similar derivation, the proposed algorithm can be applied to obtain the multi-dimensional DST/IDST recursive structures.

    Contents List of Figures iii List of Tables v Abstract vi CHAPTER 1 Introduction 1 1.1 Motivation 1 1.2 Background 3 1.2.1 Fast Algorithm Design 4 1.2.2 Recursive Architecture Design 5 1.3 Organization of the Dissertation 6 CHAPTER 2 Recursive Structures for Discrete Sinusoidal Transforms 9 2.1 Introduction 9 2.2 Goertzel’s Recursive Structure DFT Algorithm 10 2.3 Generic Recursive Structure 11 2.4 Accuracy Consideration 15 CHAPTER 3 Recursive Algorithms for One-Dimensional Discrete Sinusoidal Transforms 17 3.1 Introduction 17 3.2 Recursive Structures with Fixed Coefficients 19 3.2.1 Fixed-Coefficient Recursive Structure for Discrete Sinusoidal Transform 19 3.2.2 Selected Filter Coefficient 24 3.3 Recursive Structures with Higher Output Throughput and Fewer Recursive Cycles 29 3.3.1 High-Throughput Recursive Structures for DCT 29 3.3.2 High-Throughput Recursive Structures for IDCT 36 3.3.3 High-Throughput Recursive Structure for MDCT 47 3.3.4 High-Throughput Recursive Structure for IMDCT 50 3.4 Complexity Comparisons and Discussion 57 3.5 Summary 59 CHAPTER 4 Recursive Algorithms for Multi-dimensional Discrete Sinusoidal Transforms 65 4.1 Introduction 65 4.2 Condensed Recursive Structures for M-D DCT 66 4.2.1 Condensed-kernel Bases Conversion of M-D DCT to 1-D DCT 66 4.2.2 IIR filtering Structures 72 4.3 Condensed Recursive Structures for M-D IDCT 75 4.4 Design Examples 77 4.4.1 4×4 2-D DCT 77 4.4.2 Hardware Design for 4×4 2-D DCT 80 4.4.3 8×8×N 3-D DCT 83 4.4.4 Hardware Design for 8×8×N 3-D DCT 88 4.5 Complexity Comparisons and Discussion 92 CHAPTER 5 Conclusions and Future Works 103 5.1 Conclusions 103 5.2 Further work 105 References 107 Publication List 117 List of Figures Fig. 2. 1 The recursive structure for Goertzel’s algorithm. 11 Fig. 2. 2 The generic recursive structure for discrete cosine transform. 13 Fig. 2. 3 The generic recursive structure for discrete sine transform. 15 Fig. 2. 4 The allocation of poles in Goertzel’s algorithm of DFT. 16 Fig. 3. 1 The fixed-coefficient recursive kernel as ab is odd. 22 Fig. 3. 2 The fixed-coefficient recursive kernel as ab is even. 23 Fig. 3. 3 The allocation of poles of the proposed algorithm. 24 Fig. 3. 4 The modified fixed-coefficient recursive kernel with scalable q factor as ab is odd. 26 Fig. 3. 5 The modified fixed-coefficient recursive kernel with scalable q factor as ab is even. 26 Fig. 3. 6 The allocation of poles of the proposed algorithm with q-factor. 27 Fig. 3. 7 The accuracy performance with different q factor for the DCT-III (a = 1, b = 0). 28 Fig. 3. 8 The proposed IFR kernels for computation of DCT coefficients (a) kernel for even coefficient (b) kernel for odd coefficient. 32 Fig. 3. 9 The proposed IFR structure for computation of two DCT coefficients. 32 Fig. 3. 10 The proposed DIFR kernels for computing DCT architecture (a) kernel for even coefficient (b) kernel I for odd coefficient (c) kernel II for odd coefficient 35 Fig. 3. 11 The proposed DIFR structure for computation of two DCT coefficients. 35 Fig. 3. 12 The proposed OFR kernels for computing IDCT architecture (a) kernel for even-index sequence (b) kernel for odd-index sequence. 39 Fig. 3. 13 The proposed OFR structure for computation of two IDCT coefficients. 40 Fig. 3. 14 The proposed DOFR kernels for computing IDCT architecture (a) kernel for even-index sequence (b) kernel I for odd-index sequence (c) kernel II for odd-index sequence. 46 Fig. 3. 15 The proposed DOFR structure for computation of four IDCT coefficients. 46 Fig. 3. 16 Recursive structure of the MDCT. 50 Fig. 3. 17 Recursive structure of the IMDCT. 56 Fig. 3. 18 Accuracy comparison for the DCT-III with N = 8. 61 Fig. 4. 1 Recursive kernel for condensed 1-D DCT. 74 Fig. 4. 2 Recursive kernel for condensed 1-D DST. 74 Fig. 4. 3 Recursive kernel for condensed 1-D DCT/DST. 74 Fig. 4. 4 Realization of the proposed 4×4 2-D DCT condensed recursive structure. 81 Fig. 4. 5 Implementation of Coefficient Decomposition Unit. 82 Fig. 4. 6 The structure of the Condensed Index Generator. 82 Fig. 4. 7 Hardware architecture of 8×8×N 3-D DCT. 89 Fig. 4. 8 Implementation of Coefficient Decomposition Unit. 90 Fig. 4. 9 Implementation of Index Counter. 91 Fig. 4. 10 Structure of Condensed Index Generator. 92 Fig. 4. 11 Accuracy performance in SNR for 16×16 2-D DCT. 94 List of Tables Table 3. 1 Relationships between the input parameters and the desired transforms. 23 Table 3. 2 Number of recursive cycles for N inputs recursive structures. 60 Table 3. 3 Accuracy performance in PSNR’s (dB) of DCT-III fixed-coefficient recursive structures in finite-word length machines. 60 Table 3. 4 The symbols with respect to various methods. 60 Table 3. 5 Hardware overhead and processing speed comparisons among different architectures for N-point DCT implementation. 62 Table 3. 6 Hardware overhead and processing speed comparisons among different architectures for N-point IDCT implementation. 62 Table 3. 7 Hardware comparisons for MDCT implementation. 63 Table 3. 8 Algorithms comparisons for various IMDCT implementation. 63 Table 4. 1 The index mapping table for = 2n1 + n2 mod 4. 97 Table 4. 2 The index mapping table for = 2n1 - n2 mod 4. 97 Table 4. 3 Index mapping table for = 6n1 + 15n2 +8n3 mod 24 while n1 = 0. 97 Table 4. 4 Numbers of multiplication and addition operations for 4×4 DCT. 98 Table 4. 5 Numbers of recursive cycles for N×N DCT recursive structures. 98 Table 4. 6 Numbers of recursive cycles for N×N IDCT recursive structures. 99 Table 4. 7 Comparison of 8×8×8 DCT/IDCT recursive structures. 100 Table 4. 8 Accuracy performance of finite word-length machine in PSNR (dB) for various 8×8×8 DCT/IDCT realization methods. 101

    References
    [1] International Organization for Standardization ISO/IEC JTC1/SC2/WG11, Coding of Moving Pictures and Associated Audio, MPEG Video Committee Draft, MPEG 90/176, Rev. 2, Dec. 18, 1990.
    [2] ISO/IEC JTC1/SC29/WG11, “ISO/IEC CD 13818: Informatiom technology,” MPEG-2 Committee Draft, Dec. 1993.
    [3] ISO/IEC 14496-2, Coding of Audio-Visual Objects-Part 2: Visual, 2001.
    [4] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.24/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 560-576, July 2003.
    [5] ITU-T Recommendation H.261, “ Video Codec for Audiovisual Services at p´ 64 kbits/s,” Mar. 1993.
    [6] ITU-T Recommendation H.263, “Video Coding for Low Bit Rate Communication,” Mar. 1996.
    [7] ISO/IEC 14496-10 and ITU-T Rec. H.264, Advanced Video Coding, 2003.
    [8] D. F. Elliot and K. R. Rao, Fast Transforms, Algorithms, Applications, New York: Academic, 1982.
    [9] W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” Proc. IEEE, vol. 57, pp. 58-67, Jan. 1969.
    [10] M. H. Lee, “The center weighted Hadamard transform,” IEEE Trans. Circuits Symt. II, Vol. 36, pp. 1247-1249, Sept, 1989.
    [11] N. Ahmed, T. Natarajan, K. R. Rao, “Discrete cosine transform,” IEEE Trans. Comput., vol. C-23, pp. 90-93, Jan. 1974.
    [12] J. P. Princen and A. B. Bradley, “Subband/transform coding using filter bank designs based on time domain aliasing cancellation,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 1153-1161, Oct. 1986.
    [13] JPEG Technical Specification, Revision 8, ISO/IEC JTC1/SC2/WG8, CCITT SGV III, JPEG-8-R8, Aug. 1990.
    [14] Dolby AC-3, Multi-Channel Digital Audio Compression System Algorithm Description, Dolby Laboratories Information, Feb., 22, 1994 Revision 1.12, Dolby Laboratories Inc..
    [15] G. P. Abousleman, M. W. Marcellin, and B. R. Hunt, “Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT,” IEEE Trans. Geosci. Remote Sensing, vol. 33, pp. 26-34, Jan. 1995.
    [16] W. Raymond and F. Borko, “The XYZ algorithm for real-time compression of full-motion video,” J. Real-Time Image, vol. 2, pp. 19-34, Feb. 1996.
    [17] Y. L. Chan and W. C. Siu, “Variable temporal-length 3-D discrete cosine transform coding,” IEEE Trans. Image Processing, vol. 6, pp. 758-763, May 1997.
    [18] M. Servais and G. D. Jager, “Video compression using the three dimensional discrete cosine transform (3D-DCT),” in Proc. Symp. Commun. Signal Processing, Sept. 1997. pp. 27-32.
    [19] M. Bakr and A. E. Salama, “Implementation of 3D-DCT based video encoder/decoder system,” in Proc. 45th Midwest Symp. Circuits Syst., Aug. 2002, pp. 13-16.
    [20] K. R. Rao and P. Yip, Discrete Cosine Transform Algorithms, Advantages Applications. New York: Academic, 1990.
    [21] S. C. Chan and K. L. Ho, “Direct methods for computing discrete sinusoidal transforms,” IEE Proc. -F, vol. 137, pp.433-442, Dec. 1990.
    [22] H. S. Hou, “A fast recursive algorithm for computing the discrete cosine transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 35, pp. 1455-1461, Oct. 1987.
    [23] E. Feig and S. Winograd, “Fast algorithms for the discrete cosine transform,” IEEE Trans. Signal Processing, vol. 40, pp. 2174-2193, Sept. 1992.
    [24] N. I. Cho and S. U. Lee, “A fast 4x4 DCT algorithm for the recursive 2-D DCT,” IEEE Trans. Signal Processing, vol. 40, pp. 2166-2173, Sept. 1992.
    [25] S. C. Chan and K. L. Ho, “A new two-dimensional fast cosine transform algorithm,” IEEE Trans. Signal Processing, vol. 39, pp.481-484, Feb. 1991.
    [26] E. Feig and S. Winograd, “Fast algorithms for the discrete cosine transform,” IEEE Trans. Signal Processing, vol. 40, pp. 2174-2193, Sept. 1992.
    [27] C. Ma, “A fast recursive two dimensional cosine transform,” Proc. SPIE Intell. Robots Comput. Vision, vol. 1002, pp. 541-548, 1988.
    [28] P. Duhamel, Y. Mahieux, and J. P. Petit, “A fast algorithm for the implementation of filter banks based on time domain aliasing cancellation,” in Proc. ICASSP’91, May 1991, pp. 2209-2212.
    [29] Z. Wang, “Fast algorithms for the discrete W transform and the discrete Fourier transform,” IEEE Trans. Accoust., Speech, Signal Processing, vol. ASSP-32, pp. 803-816, Apr. 1984.
    [30] V. Britanak, “On the discrete cosine computation,” Signal Processing, vol. 40, pp. 183-194, Nov. 1994.
    [31] C. W. Kok, “Fast algorithm for computing discrete cosine transform,” IEEE Trans. Signal Processing, vol 45, pp. 757-760, Mar. 1997.
    [32] V. Britanak, “Unified discrete cosine and sine transform computation,” Signal Processing, vol. 43, pp. 333-339, May 1995.
    [33] Z. Wang, “Fast discrete sine transform algorithms,” Signal Processing, vol. 19, pp. 91-102, Feb. 1990.
    [34] A. Gupta and K. R. Rao, “A fast recursive algorithm for the discrete sine transform,” IEEE Trans. Acout., Speech, Signal Processing, vol. 38, pp. 552-557, Mar. 1990.
    [35] J. X. Wang and Z. W. Dong, “A fast algorithm for modified discrete cosine transform,” in Proc. Int. Conf. Commun. Technol., vol. 1, May 1996, pp.445-448.
    [36] B. G. Lee, “FCT – A fast cosine transform,” in Proc. ICASSP’84, pp. 28A.3.1-4.
    [37] Y. H. Fan, V. K. Madisetti, and R. M. Mersereau, “On fast algorithms for computing the inverse modified discrete cosine transform,” IEEE Signal Processing Lett., vol. 6, pp. 61-64, Mar. 1999.
    [38] C. M. Liu and W. C. Lee, “A unified fast algorithm for cosine modulated filter nabds in current audio coding standards,” J. Audio Eng. Soc., vol. 47, pp. 1061-1075, Dec. 1999.
    [39] V. Britanak and K. R. Rao, “An efficient implementation of the forward and inverse MDCT in MPEG audio coding,” IEEE Signal Processing Lett., vol. 8, pp. 48-51, Feb. 2001.
    [40] N. I. Cho and S. U. Lee, “Fast algorithm and implementation of 2-D discrete cosine transform,” IEEE Trans. Circuits Syst., vol. 38, pp.297-305, Mar. 1991.
    [41] P. Duhamel and C. Guillemot, “Polynomial transform computation of 2-D DCT,” in Proc. Int. Conf. Acoust., Speech, Signal Process., Apr. 1990, pp.1515-1518.
    [42] P. Duhamel and C. Guillemot, “A polynomial-transform based computation of the 2-D DCT with minimum multiplicative complexity,” in Proc. Int. Conf. Acoust., Speech, Signal Process., May 1996, pp.1515-1518.
    [43] H. R. Wu and F. J. Paoloui, “A two-dimensional fast cosine transform algorithm based on Hou’s approach,” IEEE Trans. Signal Processing, vol. 39, pp. 544-546, Feb. 1991.
    [44] S. S. Kung and M. H. Lee, “An expanded 2-D DCT algorithm based on convolution,” IEEE Trans. Consumer Electron., vol. 39, pp. 159-165, Aug. 1993.
    [45] A. Elnaggar and H. M. Alnuweiri, “A new multidimensional recursive architecture for computing the discrete cosine transform,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 113-119, Feb. 2000.
    [46] Z. S. Wang, Z. Y. He, C. R. Zou, and J. D. Z. Chen, “A generalized fast algorithm for n-D discrete cosine transform and its application to motion picture coding,” IEEE Trans. Circuits Syst. II, vol. 46, pp. 617-627, May 1999.
    [47] Y. Zeng, G. Bi and A. R. Leyman, “New algorithm for r-dimensional DCT-II,” IEE Proc. –Vis. Image Signal Processing, Vol. 148, pp. 1-8, Feb. 2001.
    [48] X. Chen, Q. Dai and C. Li, “A fast algorithm for computing multidimensional DCT on small size,” IEEE Trans. Signal Processing, vol. 51, pp. 213-220, Jan. 2003.
    [49] Y. Zeng, G. Bi, and A. R. Leyman, “New polynomial transform algorithm for multidimensional DCT,” IEEE Trans. Signal Processing, vol. 48, pp. 2814-2821, Oct. 2000.
    [50] L. Z. Cheng and Y. H. Zeng, “New fast algorithm for multidimensional type-IV DCT,” IEE Proc. Vision, Image, Signal Processing, Vol. 148, pp. 263-268, Aug. 2001.
    [51] Y. H. Zeng, G. Bi, and A. C. Kot, “New algorithm for multidimensional type-III DCT,” IEEE Trans. Circuit Syst. II, vol. 47, pp. 1523-1529, Dec. 2000.
    [52] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989.
    [53] G. Goertzel, “An algorithm for the evaluation of finite trigonometric series,” Amer. Math. Monthly, vol. 65, pp. 34-35, Jan. 1958.
    [54] L. P. Chau and W. C. Siu, “Recursive algorithm for the discrete cosine transform with general length,” Electron. Lett., vol 30, pp. 197-198, Feb. 1994.
    [55] Z. Wang, G. A. Jullien, and W. C. Miller, “Recursive algorithms for the forward and inverse discrete cosine transform with arbitrary length,” IEEE Signal Processing Lett., vol. 1, pp. 101-102, July 1994.
    [56] M. F. Aburdene, J. Zheng, and R. J. Kozick, “Computation of discrete cosine transform using Clenshaw’s recurrence formula,” IEEE Signal Processing Lett., vol. 2, pp. 155-156, Aug. 1995.
    [57] Y. H. Chan, L. P. Chau, and W. C. Siu, “Efficient implementation of discrete cosine transform using recursive filter structure,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, pp. 550-552, Dec. 1994.
    [58] J. F. Yang and C. P. Fan, “Compact recursive structures for discrete cosine transform,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 314-321, Apr. 2000.
    [59] S. S. Demirsoy, R. Beck, I. Kale, and A. G. Dempster, “Novel recursive-DCT implementations: a comparative study,” in Proc. International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, July 2001, pp. 120-123.
    [60] H. C. Chiang and J. C. Liu, “Regressive implementation for the forward and inverse MDCT in MPEG audio Coding,” IEEE Signal Processing Lett., vol. 3, pp. 116-118, Apr. 1996.
    [61] J. L. Wang, C. B. Wu, B. D. Liu, and J. F. Yang, ”Implementation of the discrete cosine transform and its inverse by recursive structures,” in Proc. 1999 IEEE Workshop on VLSI Signal Processing Syst., Oct. 1999, pp. 120-130.
    [62] L. P. Chau and W. C. Siu, “Direct formulation for the realization of discrete cosine transform using recursive structure,” IEEE Trans. Circuits Syst. II, vol. 42, pp. 50-52, Jan. 1995.
    [63] D. Y. Chan, J. F. Yang, and S. Y. Chen, “Regular implementation algorithms of time domain aliasing cancellation,” IEE Proc. Vision, Image, Signal Processing, vol. 143, pp. 387-392, Dec. 1996.
    [64] J. F. Yang and C. P. Fan, “Recursive implementation of discrete cosine transforms: With selectable fixed coefficient filters,” IEEE Trans. Circuits Syst. II, vol. 46, pp. 211-216, Feb. 1999.
    [65] K. J. R. Liu, and C. T. Chiu, “Unified parallel lattice structures for time-recursive discrete cosine/sine/Hartley transforms,” IEEE Trans. Signal Processing, vol. 41, pp. 1357-1377, Mar. 1993.
    [66] K. J. R. Liu, J. F. JaJa, and C. T. Chiu, “Theoretical analysis for recursive computation of discrete sinusoidal tansforms,” in Proc. IEEE Region 10’s Ninth Annual International Conference, pp. 653-657, Aug. 1994.
    [67] K. J. R. Liu, C. T. Chiu, R. K. Kolagotla, and J. F. JaJa, “Optimal sinusoidal unified architectures for the real-time computation of time-recursive discrete sinusoidal transforms,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, pp. 168-180, Apr. 1993.
    [68] E. Frantzeskakis, J. S. Baras, and K. J. R. Liu, “Time-recursive computation and real-time parallel architectures: a framework,” IEEE Trans. Signal Processing, Vol. 43, pp. 2762-2774, Nov. 1995.
    [69] V. Srinivasan and K. J. R. Liu, “VLSI design of high-speed time-recursive 2-D DCT/IDCT processor for video applications,” IEEE Trans. Circuit and Syst. Video Technol., vol. 6, pp. 87-100, Feb. 1996.
    [70] V. Kober, “Fast recursive algorithm for sliding discrete sine transform,” Electron. Lett., vol. 38, pp.1747-1748, Dec. 2002.
    [71] J. Le Bihan, “Efficient recursive relations and accurate algebraic expressions for computing extrema of (sinx/x)r,” Electron. Lett., vol. 38, pp.1484-1485, Nov. 2002.
    [72] V. Kober, “Fast algorithms for the computation of sliding discrete sine transforms,” IEEE Trans. Signal Processing, vol. 52, pp.1704-1710, June 2004.
    [73] J. A. R. Macias and A. G. Exposito, “Recursive formulation of short-time discrete trigonometric transforms,” IEEE Trans. Circuits Syst. II, vol. 45, pp. 525-527, Apr. 1998.
    [74] V. Kober and G. Cristobal, “Fast recursive algorithms for short-time discrete cosine transform,” Electron. Lett., vol. 35, pp. 1236-1238, 1999.
    [75] J. Xi and J. F. Chiraro, “Computing running DCTs and DSTs based on their second-order shift properties,” IEEE Trans. Circuit. Syst. I, vol. 47, pp. 779-783, May 2000.
    [76] U. Zolzer, Digital Audio Signal Processing, New York: Wiley, 1998.
    [77] R. X. Yin and W. C. Siu, ”A new fast algorithm for computing prime-Length DCT through cyclic convolutions,” Signal Processing. vol. 81, pp. 895-906, May. 2001.
    [78] J. F. Yang and F. C. Chen, “Recursive discrete Fourier transform with unified IIR filter structures,” Signal Processing, vol. 82, pp. 31-41, Jan. 2002.
    [79] C. Y. Hsiung, Elementary Theory of Numbers. Singapore: World Sceientific, 1992.
    [80] I. H. M. Stark, An Introduction to Number Theory. Chicago, IL: Markham, 1970.
    [81] N. I. Cho, I. D. Yun and S. U. Lee, “On the regular structure for the fast 2-D DCT algorithm,” IEEE Trans. Circuit Syst. II, vol. 40, pp. 259-266, Apr. 1993.

    下載圖示 校內:2005-10-27公開
    校外:2005-10-27公開
    QR CODE