研究生: |
黃宜琳 Huang, E-Ling |
---|---|
論文名稱: |
聚塞吩-富勒烯濃度對異質接面太陽能電池特性影響之研究 Effect of Polymer-Fullerene Concentration on Performances of Bulk Heterojunction Solar Cells |
指導教授: |
許渭州
Hsu, Wei-Chou |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 聚-3己烷塞吩 、富勒烯衍生物 、有機異質接面太陽能電池 、熱退火處理 |
外文關鍵詞: | P3HT, PCBM, organic bulk heterojunction solar cell, annealing |
相關次數: | 點閱:86 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚-3己烷塞吩(Poly (3-hexylthiophene), P3HT)混合富勒烯衍生物([6,6]-Phenyl-C61 butyric acid methyl ester, PCBM)之表面型態於影響有機異質接面太陽能電池之效能中扮演很重要的角色。於本論文中,我們探討聚-3己烷塞吩/富勒烯衍生物之濃度影響元件特性。首先對於不同濃度(1wt% ~ 5wt%)對主動層厚度之影響進行研究,可得最佳主動層厚度約為200nm,濃度須介於3wt%至5wt%。更進一步分別對3wt%、4wt%及5wt%於不同熱退火處理之元件進行探討。可得最佳製備條件為4wt%經130oC熱處理,其元件特性之短路電流為11.19 mA/cm2、開路電壓為0.6V、理想因子0.52%,效率可達3.6%。最後,藉由紫外光-可見光吸收光譜,掃描式原子力顯微鏡,X光繞射光譜儀及空間電荷限制電流法推算電子電洞移動速率方式探討濃度對元件特性之影響。
The morphology reveals important role played for photovoltaic properties of bulk heterojunction based on Poly (3-hexylthiophene) (P3HT): [6,6]-Phenyl-C61 butyric acid methyl ester (PCBM). In this study, we investigated the effected of the P3HT:PCBM concentration on the performance of solar cells. At first, we investigate that effect of various concentrations (1wt% ~ 5wt%) on thickness of the active layers. We can obtain that optimal thickness is about 200nm, and the concentrations need to aim at the range from 3wt% to 5wt%. Moreover, the effect of various concentrations (3, 4 and 5wt%) on various annealing temperatures are investigated. The optimal performance is 4wt% concentration annealed at 130 oC, which short-circuit current (JSC) is 11.19 mA/cm2, open-circuit voltage (VOC) is 0.6V, fill factor (FF) is 0.52% , and power conversion efficiency (PCE) is 3.6%. Moreover, the absorption spectrum, photoluminescence spectrum (PL), phase image, X-ray diffraction (XRD), and estimation of hole mobility and electron mobility from spec charge limited current is used to demonstrate the concentration effect on device performance.
[1] J. C. Bernede, “Organic photovoltaic cell: history, principle and techniques”, J. Chil. Chem. Soc., vol. 53 (2008), p.1549.
[2] http://europa.eu.int/comm/research/energy/photovoltaics
[3] K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem,lower dimensional, photonic up/down conversion and pasmonic nanometallic structures”, Energy Journal, vol. 2 (2009), p.504.
[4] S. E. Shaheen., D. S. Ginley, G. E. Jabbour, “Orgaic-based photovoltaics: toward low-cost power generation”, MRS Bulletin, vol. 30 (2005), p10.
[5] M. A. Green, “Third generation photovoltaics: concepts for high efficiency at low cost”, Proceedings of the Electrochemical Society, vol.10 (2001), p.124,.
[6] E. Becquerel., “Mémoire sur les effets électriques produits sous l'influence des rayons solaires”, Comptes Rendus Academy of Science, vol. 9 (1839), 145.
[7] H. Spanggaard, F. C. Kre “A brief history of the development of organic and polymeric photovoltaics”, Solar Energy Materials and Solar Cells, vol.83 (2004), p.125.
[8] H. Hoegel, “On photoelectric effects in polymers and their sensitization by dopant” , Journal of Chemical Physics, vol. 69 (1965), p.755
[9] J. Zao, A. Wang, M. Green, F. N. Forrazza, “Gamma spectroscopy with insulated CdS crystals”, Applied Physics Letters, vol.25 (1954), p. 676.
[10] J. Zao, A. Wang, M.Green, F. N. Forrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Applied Physics Letters, vol. 73 (1998), p.1991.
[11] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzer, R. Noufi, J. Ward, A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, Progress in Photovoltaics: Research and Applications, vol. 11 (2003), p. 225.
[12] H. Spanggaard, F. C. Krebs, “A brief history of the development of organic and polymeric photovoltaics”, Solar Energy Materials and Solar Cells, vol. 83 (2004), p.125.
[13] C.W. Tang, “Two‐layer organic photovoltaic cell”, Applied Physics Letters, vol. 48 (1986), p. 183.
[14] M. K. H. Bhuiyan, T. Mieno, “Effect of oxygen on electric conductivities of C60 and higher fullerene thin films”, Applied Physics Letters, vol. 441(2003), p.187.
[15] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices”, Synthetic Metals, vol. 59 (1993), p.333.
[16] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, “Semiconducting polymer‐buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells”, Applied Physics Letters, vol. 62 (1993), p.585.
[17] M. F. Durstock, R. J. Spry, J. W. Baur, B. E. Taylor, L. Y. Chiang, “Investigation of electrostatic self-assembly as a means to fabricate and interfacially modify polymer-based photovoltaic devices” Journal of Applied Physics., vol.94 (2003), p. 3253.
[18] M. D. McGehee, “Nanostructured organic–inorganic hybrid solar cells”, MRS Bulletin, vol. 34 (2009), p.95.
[19] M. Hiramoto, H. Fukusumi, M. Yokoyama, “Three‐layered organic solar cell with a photoactive interlayer of codeposited pigments”, Applied Physics Letters, vol. 58 (1991), p. 1062.
[20] M. Hiramoto, H. Fukusumi, M. Yokoyama, “Organic solar cell based on multistep charge separation system”, Applied Physics Letters, vol. 61 (1992), p.2580.
[21] W. Cai, X. Gong, Y. Cao, “Polymer solar cells: Recent development and possible routes for improvement in the performance”, Solar Energy Materials and Solar Cells, vol. 94 (2010), p.114.
[22] S. H. Park, A. Roy, S. Beaupre´ , S. Cho, N. Coates, J. S. Moon, D. Moses,M. Leclerc, K. Lee, A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”, Nature Photonics, vol. 3 (2009), p.297.
[23] Y. Y. Liang, D. Q. Feng, Y. Wu, S. T. Tsai, G. Li, Gang, C. Ray, L. P. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties”, Journal of the American Chemical Society, vol. 131 (2009), p.7792.
[24] J. Y. Kim, S. H. Kim, H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution- based titanium oxide as an optical spacer”, Advanced Materials, vol.18 (2006) p. 572.
[25] F. Padinger, R. S. Rittberger, N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells”, Advanced Functional Materials, vol.13 (2003), p.85.
[26] W. Wang, H. Wu, C. Yang, C. Luo, Y .Zhang, J. Chen, Y. Cao, “High-efficiency polymer photovoltaic devices from regioregularpoly(3-hexylthiophene-2,5-diyl) and[6,6]-phenyl-C61-butyric acid methl ester processed with oleic acid surfactant”, Applied Physics Letters, vol.90 (2007), p. 183512-1.
[27] E. Wang, L. Wang, L. Lan, C. Luo, W. Zhuang, J. Peng, Y. Cao, “High- performance polymer heterojunction solar cells of a polysilafluorene derivative”, Applied Physics Letters, vol. 92 (2008), p. 033307-1.
[28] Y. Liang, Y. Wu, D. Feng, S. T. Tsai, H. J. Son, G. Li, L. Yu, Development of new semiconducting polymers for high performance solar cells”, Journal of the American Chemical Society, vol. 131 (2009), p. 56.
[29] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”, Nature Materials, vol.6 (2007), p.497.
[30] Gur, N. A. Fromer, C. Chen, A. G. Kanaras, A. P. Alivisatos, “Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semi-conductor nanocrystals”, Nano Letters, vol. 7 (2007), p.409.
[31] B. Sun, H. J. Snaith, A. S. Dhoot, S. Westenhoff, N. C. Greenham, “Vertically segregated hybrid blends for photovoltaic devices with improved efficiency”, Journal of Applied Physics, vol.97 (2005), p.14914.
[32] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing”, Science, vol. 317 (2007), p.222.
[33] B. C. Thompson, J. M. J. Fre´ chet, “Polymer-fullerene composite solar cells”, Angewandte Chemie International Edition, vol.47 (2008), p.58.
[34] H. Hoppe, N. S. Sariciftci, “Morphology of polymer/fullerene bulk heterojunction solar cells”, Journal of Materials Chemistry, vol.16 (2006), p.45.
[35] X. N. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells”, Nano Letters., vol.5 (2005), p.579.
[36] X. Yang, J. Loos, “Toward high-performance polymer solar cells: the importance of morphology control”, Macromolecules, vol.40 (2007), p.1353.
[37] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, “Processing additives for improved efficiency from bulkheterojunction solar cells”, Journal of the American Chemical Society, vol. 130 (2008), p.3619.
[38] Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, “Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells”, Advanced Functional Materials, vol.18 (2008), p. 1783.
[39] C. W. Chu, H. Yang, W. J. Hou, J. Huang, G. Li, Y. Yang, “Control of the nanoscale crystallinity and phase separation in polymer solar cells”, Applied Physics Letters, vol. 92(2008), p. 103306.
[40] G. Li, Y. Yao, H. Yang, V. Shirotriya, G. Yang, Y. Yang, ‘‘Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes”, Advanced Functional Materials, vol, 17 (2007), p.1636.
[41] G. Li, V. Shirotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Materials, vol. 4 (2005), p.864.
[42] W. H. Baek, H. Yang, T. S. Yoon, C. J. Kang, H. H. Lee, Y. S. Kim “Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells ” Solar Energy Materials and Solar Cells, vol. 93(2009) p.1263.
[43] S. M. Sze, “Semiconductor devices: physics and technology-2nd ed”, John Wiley and Sons, 1985.
[44] P. Vanlaeke,, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, J.V. Manca,“P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics”, Solar Energy Materials and Solar Cells, vol. 90 (2006), p.2150.
[45] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Applied Physics Letters, vol. 84 (2004), p. 3013.
[46] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells,” Journal of Applied Physics, vol. 94 (2003), p. 6849.
[47] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Advanced Functional Materials, vol. 11 (2001), p. 374.
[48] S. R. Forrest, “The limits to organic photovoltaic cell efficiency”, MRS Bulletin, vol.30 (2005), p.28.
[49] Z. B. Wang, M. G. Helander, M. T. Greiner, J. Qiu, Z. H. Lub, “Carrier mobility of organic semiconductors based on current-voltage characteristics”, Journal of Applied Physics, vol. 107 (2010) , p.034506.
[50] M. A. Lampert, P. Mark, “Current injection in solids”, Academic Press: New York (1970).
[51] P. N. Murgatroyd, “Theory of space-charge-limited current enhanced by Frenkel effect”, Journal of Physics D: Applied Physics, vol.3 (1970), p.151.
[52] K. H. Hsiao, “Study of silver oxide anode of single donor-acceptor heterojunction organic photovoltaic cell”, National Cheng Kung University (2009).
[53] http://www.lumtec.com.tw
[54] W. C. Tang, “Fabrication of hybrid solar cells using nanowires and conducting polymers”, National Cheng Kung University (2006).
[55] K. Fehse, K. Walzer, K. Leo, W. Lövenich, A. Elschner, “Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes”, Advanced Materials, vol. 19 (2007), p.441–444.
[56] L. S. C. Pingree, B. A. MacLeod, D. S. Ginger, “The changing face of PEDOT:PSS films: substrate, bias, and processing effects on vertical charge transport”, The Journal of Physical Chemistry C, vol. 21(2008), p.7922.
[57] http://en.wikipedia.org/wiki/1,2-Dichlorobenzene
[58] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, “Effect of LiF/metal electrodes on the performance of plastic solar cells” Applied Physics Letters, vol.80 (2002), p.1288.
[59] K. Furukaw, Y. Terasak, H. Ued, M. Matsumura, “Effect of a plasma treatment of IT0 on the performance of organic electroluminescent devices”, Synthetic Metals, vol. 91 (1997), p.99.
[60] T. Kawai, Y. Maekawa, M. Kusabiraki, “Plasma treatment of ITO surfaces to improve luminescence characteristics of organic light-emitting devices with dopants” Surface Science, vol. 601 (2007), p.5276.
[61] K. P. Kim, A. M. Hussain, D. K. Hwang, S. H. Woo, H. K. Lyu, S. H. Baek, Y. Jang, J. H. Kimy, “Work function modification of indium–tin oxide by surface plasma treatments using different gases”, Japanese Journal of Applied Physics, vol. 48 (2009), p.0216-01.
[62] J. G. Jang, S. J. Shin, S. K. Lim, H. J. Chang, S. O. Ryu, Myoung Seon Gong, Jun Yeob Lee, “Effect of plasma treatment of ITO electrode on the characteristics of green OLEDs with Alq¬3-C545T emissive layer” Molecular Crystals and Liquid Crystals, vol. 498 (2009), p. 274.
[63] Sharma, P. J. Hotchkiss, S. R. Marder, B. Kippelen, “Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes”, Journal of Applied Physic, vol. 105 (2009), p.084507.
[64] http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/uvspec.htm
[65] T. H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces”, Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.) (2001), p. 9209.
[66] http://www.mobot.org/jwcross/spm/notes.htm
[67] C. C. Chang, C. L. Pai, W. C. Chen, S. A. Jenekhe, “Spin coating of conjugated polymers for electronic and optoelectronic applications”, Thin Solid Films, vol.479 (2005), p.254.
[68] P. C. Sukanek, “"Anomalous" Speed dependence in polyimide spin Coating”, Journal of the Electrochemical Society, vol. 144 (1997), p. 3959.
[69] D. Meyerhofer, “Characteristics of resist films produced by spinning”, Journal of Applied Physic, Vol. 49 (1978), p.3993.
[70] J. Moulé, J. B. Bonekamp, K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells”, Journal of Applied Physic, vol.100 (2006), p.094503.
[71] G. Li, V. Shrotriya, Y. Yao, Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on pol (3-hexylthiophene)”, Journal of Applied Physics, vol. 98 (2005), p.043704,.
[72] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology”, Advanced Functional Materials , vol.15 (2005), p.1617.
[73] C. W. Liang, W. F. Su, L. Wang, “Enhancing the photocurrent in poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells by using poly(3-hexylthiophene) as a buffer layer”, Applied Physics Letters, vol. 95 (2009), p.133303.
[74] M. C. Qules, T. Ferenczi, T. Agostinelli, P. G. Etchgoin, Y. Kim, T. D. Anthopoulos, P. N. S. Donal, D. C. Bradley, J. Nelson, “ Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends ”, Nature materials, vol.7 (2008), p.158.
[75] H. Jin, M. Tuomikoski, J. Hiltunen, P. Kopola, A. Maaninen, F. Pino, “Polymer-electrode interfacial effect on photovoltaic performances in poly(3-hexylthiophene):pheny-C61-butyric acid methyl ester based solar cells”, Journal of Physical Chemistry C, vol. 113 (2009), p.16807.
[76] B. R. Saunders, M. L. Turner,“Nanoparticle–polymer photovoltaic cells”, Advances in Colloid and Interface Science, vol. 138 (2008), p.1.
[77] D. Lee, J. Park, S. Noh, J. Kim, S. Lee, C. Lee, “Effect of solution processed salt layers on the device performances of polymer solar cells” Thin Solid Films, vol. 518 (2009), p.541.
[78] Y. D. Park, H. S. Lee, Y. J. Choi, D. Kwak, J. H. Cho, S. Lee, K. Cho, “Solubility-induced ordered polythiophene precursors for high-performance organic thin-film transistors”, Advanced Functional Materials, vol.19 (2009), p.1200.
[79] J. H. Park, J. S. Kim, J. H. Lee, W. H. Lee, K. Cho, “Effect of annealing solvent solubility on the performance of poly(3-hexylthiophene)/methanofullerene solar cells”, The Journal of Physical Chemistry C , vol. 113 (2009), p.17579.
[80] J. Moulé, K. Meerholz, “Controlling morphology in polymer–fullerene mixtures”, Advanced Materials, vol. 20 (2008), p.240.
[81] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudi, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene”, Science, vol. 258 (1992), p.27.
[82] M. Bajpai, K. Kumaria, R. Srivastava, M. N. Kamalasanana, R.S. Tiwari, S. Chanda, “Electric field and temperature dependence of hole mobility in electroluminescent PDY 132 polymer thin films”, Solid State Communications, vol. 150 (2010), p.581.
[83] E. Zhou, Z. Tan, C. Yang, Y. Li, “Linking polythiophene chains through conjugated bridges: a way to improve charge transport in polymer solar cells”, Macromol. Rapid Commun., vol.27 (2006), p.793.
[84] E. Zhou, Z. Tan, Y. Yang, L. Huo, Y. Zou, C. Yang, Y. Li, “Synthesis, hole mobility, and photovoltaic properties of cross-linked polythiophenes with vinylene-terthiophene-vinylene as conjugated bridge” Macromolecules, vol. 40 (2007), p.1831.
[85] D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov, J. C. Hummelen, “Electrical and optical design and characterisation of regioregular poly(3-hexylthiophene-2,5diyl)/fullerene-based heterojunction polymer solar cells”, Synthetic Metals, vol. 138 (2003), p.299.