簡易檢索 / 詳目顯示

研究生: 林謙妘
Lin, Chien-Yun
論文名稱: 太陽光應答之生質藻酸氣凝膠:六價鉻還原及氫氧自由基氧化反應
Sunlight-responsive Bio-based Alginate Aerogel: Reduction of Hexavalent Chromium and Hydroxyl Radical Induced Oxidation
指導教授: 侯文哲
Hou, Wen-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 32
中文關鍵詞: 海藻酸氣凝膠六價鉻還原氫氧自由基
外文關鍵詞: Alginate Aerogel, Cr (VI) Reduction, Hydroxyl Radical
相關次數: 點閱:62下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們發表了一項使用海藻酸氣凝膠(alginate aerogel, AA)的研究,這是一種新穎的光活性材料,在可再生的太陽光驅動下,具有在30分鐘內將有毒的六價鉻還原成無毒的三價鉻並同時產生高活性氧化物質—氫氧自由基(∙OH)的能力。海藻酸氣凝膠是由天然的原料:海藻酸鹽 (alginate)所合成,海藻酸鹽是一種由藻類所萃取的多醣體生物性聚合物,非常容易與二價陽離子(如:鈣和鋇離子)產生交聯反應(cross-linking)並生成水凝膠(Hydrogel)。而水凝膠可進一步透過冷凍乾燥的程序,產生高孔洞性的材料,稱為“氣凝膠”。
    本研究在光還原六價鉻的過程中探討多項參數,例如: pH 值、草酸(Oxalate)的添加、不同的光照波長、溶氧含量。我們發現在海藻酸氣凝膠的光催化反應下有添加草酸和低pH值的情況能讓六價鉻的還原效率以及氫氧自由基的生成有大幅的提升。當六價鉻存在時,過氧化氫(H2O2)以及氫氧自由基(∙OH)並不能有效的進行生產,直到六價鉻耗盡。不論是太陽光或是可見光都能驅動海藻酸氣凝膠的光活性。綜合上述所說,在海藻酸氣凝膠的光催化反應下能有效的產生氫氧自由基,因此它具有很大的潛能作為一種新型態的高級氧化程序(AOP)並由太陽光驅動,可用於處理難分解之有機污染物,以及光還原有毒的六價鉻。

    We present a study using alginate aerogel (AA), a new photoactive material that was capable of mediating the reduction of toxic Cr (VI) to non-toxic Cr (III) in 30 min and generating highly reactive ∙OH oxidant under renewable solar irradiation. AA was synthesized from a natural feedstock, alginate, a polysaccharide biopolymer extracted from algae that can be readily cross-linked with divalent cations, e.g., Ca2+ and Ba2+, forming hydrogel. The hydrogel was subsequently processed by freeze-drying, resulting in a highly porous material called “aerogel”. We studied several parameters such as pH, the presence of oxalate, light wavelength, and dissolved O2 level. We found that the photoactivity of AA toward Cr (VI) reduction and ∙OH generation was greater in the presence of oxalate at lower pH. In the presence of Cr (VI), the generation of H2O2 and ∙OH did not proceed efficiently until the depletion of Cr (VI). Both sunlight and visible light can drive the photoactivity of AA. Considering that photoactivity of AA can generates ∙OH efficiently, it has a great potential as a new sunlight-driven advanced oxidation process (AOP) that can be used to treat recalcitrant organic pollutants, in addition to photoreduction of toxic Cr (VI).

    摘要 I ABSTRACT II 誌謝 III CONTENTS IV LIST OF FIGURE VI CHAPTER 1. INTRODUCTION 1 1.1 Background 1 1.2 Objectives 2 CHAPTER 2. LITERATURE REVIEWS 3 2.1 Properties and applications of alginate 3 2.2 The toxicity and chemistry of Cr in the environment 5 2.3 Treatment method of Cr (VI) 6 2.4 Applications of alginate gels in pollutant removal 6 CHAPTER 3. EXPERIMENTAL PROCEDURE 8 3.1 Materials 8 3.2 Preparation of AA 8 3.3 Irradiation Experiments 9 3.4 Chemical Analyses 10 3.5 Characterization of AA 13 CHAPTER 4. RESULT AND DISCUSSION 14 4.1 Characterization of AA 14 4.2 Photocatalyzed reduction of Cr (VI) by AA 17 4.3 Solution chemistry on photocatalyzed reduction of Cr (VI) 18 4.4 Oxalate depletion in relation to Cr(VI) reduction 21 4.5 Hydroxyl radical (∙OH) and H2O2 formation in relation to Cr (VI) reduction 22 4.6 Factors affecting ∙OH formation 24 4.7 Wavelength effect 25 4.8 Structural evolution of AA before and after photocatalysis. 25 CHAPTER 5. CONCLUSION 28 5.1 Conclusion 28 SUPPORTING INFORMATION 29 REFERENCE 30

    (1) Norseth, T. The Carcinogenicity of Chromium. Environ. Health Perspect. 1981, 40, 121–130.
    (2) Matlock, M. M.; Howerton, B. S.; Atwood, D. A. Chemical Precipitation of Heavy Metals from Acid Mine Drainage. Water Res. 2002, 36 (19), 4757–4764.
    (3) Bajpai, S. K.; Sharma, S. Investigation of Swelling/Degradation Behaviour of Alginate Beads Crosslinked with Ca2+ and Ba2+ Ions. React. Funct. Polym. 2004, 59 (2), 129–140.
    (4) Lee, K. Y.; Mooney, D. J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37 (1), 106–126.
    (5) Grant, G. T.; Morris, E. R.; Rees, D. A.; Smith, P. J. C.; Thom, D. Biological Interactions between Polysaccharides and Divalent Cations: The Egg-Box Model. FEBS Lett. 1973, 32 (1), 195–198.
    (6) Balakrishnan, B.; Mohanty, M.; Umashankar, P.; Jayakrishnan, A. Evaluation of an in Situ Forming Hydrogel Wound Dressing Based on Oxidized Alginate and Gelatin. Biomaterials 2005, 26 (32), 6335–6342.
    (7) Smidsrød, O.; Skja˚k-Br˦k, G. Alginate as Immobilization Matrix for Cells. Trends Biotechnol. 1990, 8, 71–78.
    (8) Rowley, J. A.; Madlambayan, G.; Mooney, D. J. Alginate Hydrogels as Synthetic Extracellular Matrix Materials. Biomaterials 1999, 20 (1), 45–53.
    (9) Ellis, A. S.; Johnson, T. M.; Bullen, T. D. Chromium Isotopes and the Fate of Hexavalent Chromium in the Environment. Science 2002, 295 (5562), 2060.
    (10) Dayan, A. D.; Paine, A. J. Mechanisms of Chromium Toxicity, Carcinogenicity and Allergenicity: Review of the Literature from 1985 to 2000. Hum. Exp. Toxicol. 2001, 20 (9), 439–451.
    (11) Buaki-Sogo, M.; Serra, M.; Primo, A.; Alvaro, M.; Garcia, H. Alginate as Template in the Preparation of Active Titania Photocatalysts. ChemCatChem 2013, 5 (2), 513–518.
    (12) Dutta, S.; Patra, A. K.; De, S.; Bhaumik, A.; Saha, B. Self-Assembled TiO2 Nanospheres by Using a Biopolymer as a Template and Its Optoelectronic Application. ACS Appl. Mater. Interfaces 2012, 4 (3), 1560–1564.
    (13) Mallepally, R. R.; Bernard, I.; Marin, M. A.; Ward, K. R.; McHugh, M. A. Superabsorbent Alginate Aerogels. The Journal of Supercritical Fluids 2013, 79, 202–208.
    (14) Huang, Y.; Wang, Z. Preparation of Composite Aerogels Based on Sodium Alginate, and Its Application in Removal of Pb2+and Cu2+from Water. Int. J. Biol. Macromol. 2018, 107, 741–747.
    (15) Papageorgiou, S. K.; Katsaros, F. K.; Favvas, E. P.; Romanos, G. E.; Athanasekou, C. P.; Beltsios, K. G.; Tzialla, O. I.; Falaras, P. Alginate Fibers as Photocatalyst Immobilizing Agents Applied in Hybrid Photocatalytic/Ultrafiltration Water Treatment Processes. Water Res. 2012, 46 (6), 1858–1872.
    (16) Zhao, K.; Feng, L.; Lin, H.; Fu, Y.; Lin, B.; Cui, W.; Li, S.; Wei, J. Adsorption and Photocatalytic Degradation of Methyl Orange Imprinted Composite Membranes Using TiO2/Calcium Alginate Hydrogel as Matrix. Catal. Today 2014, 236, 127–134.
    (17) Lavorato, C.; Primo, A.; Molinari, R.; García, H. Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catal. 2014, 4 (2), 497–504.
    (18) Ma, Y.; Wang, J.; Xu, S.; Feng, S.; Wang, J. Ag2O/Sodium Alginate-Reduced Graphene Oxide Aerogel Beads for Efficient Visible Light Driven Photocatalysis. Appl. Surf. Sci. 2018, 430, 155–164.
    (19) Yu, M.; Zhang, H.; Yang, F. Hydrophilic and Compressible Aerogel: A Novel Draw Agent in Forward Osmosis. ACS Appl. Mater. Interfaces 2017, 9 (39), 33948–33955.
    (20) Urone, P. F. Stability of Colorimetric Reagent for Chromium, s-Diphenylcarbazide, in Various Solvents. Anal. Chem. 1955, 27 (8), 1354–1355.
    (21) Wróbel, K. Enhanced Spectrophotometric Determination of Chromium (VI) with Diphenylcarbazide Using Internal Standard and Derivative Spectrophotometry. Talanta 1997, 44 (11), 2129–2136.
    (22) Zhou, M.; Diwu, Z.; Panchuk-Voloshina, N.; Haugland, R. P. A Stable Nonfluorescent Derivative of Resorufin for the Fluorometric Determination of Trace Hydrogen Peroxide: Applications in Detecting the Activity of Phagocyte NADPH Oxidase and Other Oxidases. Anal. Biochem. 1997, 253 (2), 162–168.
    (23) Qiusheng, Z.; Xiaoyan, L.; Jin, Q.; Jing, W.; Xuegang, L. Porous Zirconium Alginate Beads Adsorbent for Fluoride Adsorption from Aqueous Solutions. RSC Adv. 2015, 5 (3), 2100–2112.
    (24) Deepa, B.; Abraham, E.; Pothan, L. A.; Cordeiro, N.; Faria, M.; Thomas, S. Biodegradable Nanocomposite Films Based on Sodium Alginate and Cellulose Nanofibrils. Materials 2016, 9 (1), 50.
    (25) P. Vanýsek, Electrochemical Series, CRC Handbook of Chemistry and Physics, 1998.
    (26) Rai, D.; Eary, L. E.; Zachara, J. M. Environmental Chemistry of Chromium. Sci. Total Environ. 1989, 86 (1–2), 15–23.
    (27) Draget, K.; Skjakbrak, G.; Smidsrod, O. Alginic Acid Gels: The Effect of Alginate Chemical Composition and Molecular Weight. Carbohydr. Polym. 1994, 25 (1), 31–38.
    (28) Forouzan, F.; Richards, T. C.; Bard, A. J. Photoinduced Reaction at TiO2 Particles. Photodeposition from NiII Solutions with Oxalate. J. Phys. Chem. 1996, 100 (46), 18123–18127.
    (29) Campos‐Martin, J. M.; Blanco‐Brieva, G.; Fierro, J. L. G. Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process. Angew. Chem. Int. Ed. 2006, 45 (42), 6962–6984.
    (30) Pi, Y.; Schumacher, J.; Jekel, M. The Use of Para-Chlorobenzoic Acid (PCBA) as an Ozone/Hydroxyl Radical Probe Compound. Ozone Sci. Eng. 2005, 27 (6), 431–436.
    (31) Hirakawa, T.; Nosaka, Y. Properties of O2•- and OH• Formed in TiO2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H2O2 and Some Ions. Langmuir 2002, 18 (8), 3247–3254.
    (32) Akhlaq, M. S.; Schuchmann, H. P.; Von Sonntag, C. Degradation of the Polysaccharide Alginic Acid: A Comparison of the Effects of UV Light and Ozone. Environ. Sci. Technol. 1990, 24 (3), 379–383.

    下載圖示 校內:2023-08-27公開
    校外:2023-08-27公開
    QR CODE