| 研究生: |
陳士涵 Chen, Shi-Han |
|---|---|
| 論文名稱: |
以生物力學模型評估腕隧道解離對第一環狀腱鞘-肌腱系統之影響 Biomechanical analysis of the A1 pulley-tendon system after carpal tunnel release |
| 指導教授: |
蘇芳慶
Su, Fong-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 腕隧道解離手術 、板機指 、生物力學模型 |
| 外文關鍵詞: | carpal tunnel release, trigger finger, biomechanical model |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腕隧道症候群和板機指為臨床上兩種常見的手部疾病。腕隧道症候群的病因是橫腕韌帶壓迫到正中神經,導致手掌橈側會有麻痺或刺痛等感覺異常的症狀;板機指也稱作狹窄性腱鞘炎,病因為屈指肌腱與腱鞘之結構尺寸不合,導致肌腱滑動不順暢。然而研究發現腕隧道症候群病患在接受腕隧道解離手術後,罹患板機指的機率增加,其中以大拇指發生機率最高,中指跟食指次之。因此過去也有許多研究針對此現象的成因加以探討,根據先前研究指出患者在腕隧道解離手術後,手指在施力時,腕隧道內的屈指肌腱會朝掌側移動,而在掌指關節處,屈指肌腱進入第一環狀腱鞘時的角度也會比術前大。目前認為造成這些改變的原因可能是解離橫腕韌帶後所導致的拉弓現象,然而在臨床上這些肌腱的改變可能會產生的影響是尚未明確的。
本研究的目的是發展一個生物力學模型去預測患者在解離手術後,中指抓握的生物力學表現,並且將此結果與健康成人相比較;同時,也量化拉弓現象對肌腱腱鞘系統所造成的影響;除此之外,此模型也建立屈指肌腱跟第一環狀腱鞘的力學關係式。本研究透過調整肌腱進入的角度、改變肌腱力臂和調整掌指關節角度來進一步了解並解析拉弓現象對中指的生物力學所造成的影響。本研究中引用的參數皆以過往實驗數據作為基礎,並利用程式最佳化出此模型中各項數據的可能值。
在此模型中,健康成人與模擬病人的結果在肌腱張力與關節受力上沒有顯著差異,這可能代表模擬病人與健康成人在進行抓握動作時,出力型態並沒有太大差異。但在肌腱作用於第一環狀腱鞘上的正向力,模擬病人的正向力相較於健康成人增加百分之三十,說明屈指肌腱進入第一環狀腱鞘的角度增加的確會使病人的腱鞘承受較大的作用力。除此之外,本研究藉由調整肌腱進入角度探討肌腱張力、關節受力與正向力的改變,結果發現肌腱張力跟關節受力無顯著變動,然而正向力則隨著角度增加而顯著上升。本研究的結果提供患者在腕隧道解離手術之後手指生物力學的相關資訊,並且對於術後罹患板機指的可能原因有進一步的釐清,說明了因為解離手術造成拉弓效應,使患者罹患板機指風險提高,期許未來能提供給臨床參考並且進一步發展出術後預防板機指發生的策略。
The common surgical treatment for carpal tunnel syndrome is carpal tunnel release, which divides the transverse carpal ligament to release the compression on the median nerve. Previous studies have demonstrated that morphological changes would occur both in the carpal tunnel and at the first annular pulley level after carpal tunnel release. These changes may increase the risk of trigger finger occurring. However, the exact influence of these morphological changes on biomechanics is still unclear. Moreover, the most frequently affected trigger finger after carpal tunnel release is the long finger, followed by the ring finger.
The purpose of the current study is to develop a biomechanical model to compare the different biomechanics of the tendon-pulley system during grasping between healthy individuals and patients after carpal tunnel release. The input of the model from grasping posture was collected by a motion capture system and custom-designed cylindrical simulator. The model simulated the grasping posture of patients after carpal tunnel release by combining the grasping postures of healthy individuals with the morphological changes observed in previous studies. Consequently, the model was able to predict the internal forces of healthy individuals and patients during grasping, including tendon tensions and joint constraints. Besides, by varying the entrance angle and increasing the moment arms of the flexors at MCP joint, the current study could evaluate the influence of the bowstring effect after carpal tunnel release
Unobvious differences in the tendon tensions and joint constraints were found by a comparison of the results between health individuals and patients. The influence of the bowstring effect on the moment arms of the flexor tendons at MCP joints could be neglected under the lower applied force. However, patients would suffer from larger normal force acting on the first annular pulley. The occurrence of the entrance angle after carpal tunnel release clearly affected the normal force.
Our findings provide information about the different biomechanics of the tendon-pulley system for patients after carpal tunnel release and healthy individuals. The results offer a probable solution to the question as to why patient might encounter trigger finger after carpal tunnel release. Besides, the current study suggests that patients after carpal tunnel release should avoid the posture that may suffer from larger normal force for a period of time.
Lee, S., K. Bae, and W. Choy, The relationship of trigger finger and flexor tendon volar migration after carpal tunnel release. Journal of Hand Surgery (European Volume), 2014. 39(7): p. 694-698.
2. Goshtasby, P.H., D.R. Wheeler, and O.J. Moy, Risk factors for trigger finger occurrence after carpal tunnel release. Hand Surg, 2010. 15(2): p. 81-7.
3. Hayashi, M., et al., Carpal tunnel syndrome and development of trigger digit. J Clin Neurosci, 2005. 12(1): p. 39-41.
4. Neumann, D.A., Kinesiology of the musculoskeletal system: foundations for rehabilitation. 2013: Elsevier Health Sciences.
5. Doyle, J.R., Anatomy of the finger flexor tendon sheath and pulley system. J Hand Surg Am, 1988. 13(4): p. 473-84.
6. Lin, G.T., et al., Mechanical properties of human pulleys. J Hand Surg Br, 1990. 15(4): p. 429-34.
7. Roloff, I., et al., Biomechanical model for the determination of the forces acting on the finger pulley system. J Biomech, 2006. 39(5): p. 915-23.
8. Tanaka, T., et al., The effect of partial A2 pulley excision on gliding resistance and pulley strength in vitro. J Hand Surg Am, 2004. 29(5): p. 877-83.
9. Hamman, J., et al., A biomechanical study of the flexor digitorum superficialis: effects of digital pulley excision and loss of the flexor digitorum profundus. J Hand Surg Am, 1997. 22(2): p. 328-35.
10. Rispler, D., et al., Efficiency of the flexor tendon pulley system in human cadaver hands. J Hand Surg Am, 1996. 21(3): p. 444-50.
11. Uchiyama, S., et al., Gliding resistance of extrasynovial and intrasynovial tendons through the A2 pulley. J Bone Joint Surg Am, 1997. 79(2): p. 219-24.
12. Ibrahim, I., et al., Carpal tunnel syndrome: a review of the recent literature. The open orthopaedics journal, 2012. 6(1).
13. Werner, R.A. and M. Andary, Carpal tunnel syndrome: pathophysiology and clinical neurophysiology. Clinical Neurophysiology, 2002. 113(9): p. 1373-1381.
14. Simpson, J.A., Electrical signs in the diagnosis of carpal tunnel and related syndromes. Journal of Neurology, Neurosurgery & Psychiatry, 1956. 19(4): p. 275-280.
15. Ghasemi-rad, M., et al., A handy review of carpal tunnel syndrome: From anatomy to diagnosis and treatment. World journal of radiology, 2014. 6(6): p. 284.
16. Burton, C., L.S. Chesterton, and G. Davenport, Diagnosing and managing carpal tunnel syndrome in primary care. Br J Gen Pract, 2014. 64(622): p. 262-263.
17. Tamparo, C.D. and M.A. Lewis, Diseases of the Human Body. 2011: F.A. Davis.
18. Aroori, S. and R.A. Spence, Carpal tunnel syndrome. The Ulster medical journal, 2008. 77(1): p. 6.
19. Chern, T.C., et al., Ultrasonographically Guided Percutaneous Carpal Tunnel Release: Early Clinical Experiences and Outcomes. Arthroscopy, 2015. 31(12): p. 2400-10.
20. Akhtar, S., et al., Management and referral for trigger finger/thumb. Bmj, 2005. 331(7507): p. 30-33.
21. Kamhin, M., J. Engel, and M. Heim, The fate of injected trigger fingers. The Hand, 1983. 15(2): p. 218-220.
22. Kolind-sørensen, V., Treatment of trigger fingers. Acta Orthopaedica Scandinavica, 1970. 41(4): p. 428-432.
23. Lipscomb, P.R., 14 Tenosynovitis of the Hand and the Wrist. Clinical orthopaedics, 1959. 13: p. 164-181.
24. Rayan, G.M., Stenosing tenosynovitis in bowlers. The American journal of sports medicine, 1990. 18(2): p. 214-215.
25. Moore, J.S., Flexor tendon entrapment of the digits (trigger finger and trigger thumb). Journal of Occupational and Environmental Medicine, 2000. 42(5): p. 526-545.
26. Sungpet, A., C. Suphachatwong, and V. Kawinwonggowit, Trigger digit and BMI. Journal of the Medical Association of Thailand= Chotmaihet thangphaet, 1999. 82(10): p. 1025-1027.
27. Quinnell, R., Conservative management of trigger finger. The Practitioner, 1980. 224(1340): p. 187-190.
28. Sato, E.S., et al., Treatment of trigger finger: randomized clinical trial comparing the methods of corticosteroid injection, percutaneous release and open surgery. Rheumatology, 2012. 51(1): p. 93-99.
29. Newport, M.L., L.B. Lane, and S.A. Stuchin, Treatment of trigger finger by steroid injection. The Journal of hand surgery, 1990. 15(5): p. 748-750.
30. Turowski, G.A., P.D. Zdankiewicz, and J.G. Thomson, The results of surgical treatment of trigger finger. The Journal of hand surgery, 1997. 22(1): p. 145-149.
31. Kleinert, H. and J. Lubahn. Current state of flexor tendon surgery. in Annales de Chirurgie de la Main. 1984. Elsevier.
32. Ferree, S., et al., Risk factors for return with a second trigger digit. Journal of Hand Surgery (European Volume), 2014. 39(7): p. 704-707.
33. Hayashi, M., et al., Carpal tunnel syndrome and development of trigger digit. Journal of clinical neuroscience, 2005. 12(1): p. 39-41.
34. Kim, J., et al., Pre-and post-operative comorbidities in idiopathic carpal tunnel syndrome: cervical arthritis, basal joint arthritis of the thumb, and trigger digit. Journal of Hand Surgery (European Volume), 2013. 38(1): p. 50-56.
35. Hombal, J. and R. Owen, Carpal tunnel decompression and trigger digits. The Hand, 1970. 2(2): p. 192-196.
36. Harada, K., et al., Trigger digits-associated carpal tunnel syndrome: relationship between carpal tunnel release and trigger digits. Hand Surgery, 2005. 10(02n03): p. 205-208.
37. King, B.A., P.J. Stern, and T.R. Kiefhaber, The incidence of trigger finger or de Quervain’s tendinitis after carpal tunnel release. Journal of Hand Surgery (European Volume), 2012: p. 1753193412453424.
38. Netscher, D., et al., Transverse carpal ligament: its effect on flexor tendon excursion, morphologic changes of the carpal canal, and on pinch and grip strengths after open carpal tunnel release. Plastic and reconstructive Surgery, 1997. 100(3): p. 636-642.
39. Chen, H.-Y., Effects of Carpal Tunnel Release on Biomechanical Behavior of Flexor Tendons - A Clinical Study. 2017.
40. Wu, C.-M., Investigation of the Comorbidity of Carpal Tunnel Release and Trigger Finger with Ultrasonography. 2017.
41. Karalezli, N., et al., Transverse carpal ligament and forearm fascia release for the treatment of carpal tunnel syndrome change the entrance angle of flexor tendons to the A1 pulley: the relationship between carpal tunnel surgery and trigger finger occurence. The Scientific World Journal, 2013. 2013.
42. Cooney, W.P., 3rd and E.Y. Chao, Biomechanical analysis of static forces in the thumb during hand function. J Bone Joint Surg Am, 1977. 59(1): p. 27-36.
43. Brook, N., et al., A biomechanical model of index finger dynamics. Med Eng Phys, 1995. 17(1): p. 54-63.
44. Chao, E.Y.S., et al., Biomechanics of the Hand: A Basic Research Study. 1989.
45. Yu, H.L., R.A. Chase, and B. Strauch, Atlas of Hand Anatomy and Clinical Implications. 2004: Mosby.
46. Mirakhorlo, M., et al., Anatomical parameters for musculoskeletal modeling of the hand and wrist. International Biomechanics, 2016. 3(1): p. 40-49.
47. Chao, E.Y., J.D. Opgrande, and F.E. Axmear, Three-dimensional force analysis of finger joints in selected isometric hand functions. J Biomech, 1976. 9(6): p. 387-96.
48. Herzog, W. and T. Leonard, Validation of optimization models that estimate the forces exerted by synergistic muscles. Journal of Biomechanics, 1991. 24: p. 31-39.
49. Lu, S.C., et al., Quantifying catch‐and‐release: The extensor tendon force needed to overcome the catching flexors in trigger fingers. Journal of Orthopaedic Research, 2013. 31(7): p. 1130-1135.
50. Sancho-Bru, J.L., et al., A 3-D dynamic model of human finger for studying free movements. J Biomech, 2001. 34(11): p. 1491-500.
51. Vigouroux, L., et al., Using EMG data to constrain optimization procedure improves finger tendon tension estimations during static fingertip force production. J Biomech, 2007. 40(13): p. 2846-56.
52. Fowler, N. and A. Nicol, Interphalangeal joint and tendon forces: normal model and biomechanical consequences of surgical reconstruction. Journal of Biomechanics, 2000. 33(9): p. 1055-1062.
53. Fowler, N. and A. Nicol, A force transducer to measure individual finger loads during activities of daily living. Journal of biomechanics, 1999. 32(7): p. 721-725.
54. Fowler, N. and A. Nicol, Functional and biomechanical assessment of the normal and rheumatoid hand. Clinical biomechanics, 2001. 16(8): p. 660-666.
55. Vigouroux, L., et al., Estimation of finger muscle tendon tensions and pulley forces during specific sport-climbing grip techniques. Journal of biomechanics, 2006. 39(14): p. 2583-2592.
56. Lin, G.-T., et al., Functional anatomy of the human digital flexor pulley system. The Journal of hand surgery, 1989. 14(6): p. 949-956.
57. Hume, E.L., et al., Biomechanics of pulley reconstruction. The Journal of hand surgery, 1991. 16(4): p. 722-730.
58. Hunter, J. and J. Cook, The pulley system: rationale for reconstruction, in Difficult problems in hand surgery. 1982, CV Mosby, St. Louis. p. 94-102.
59. Delattre, J., et al., The mechanical role of the digital fibrous sheath: application to reconstructive surgery of the flexor tendons. Anatomia clinica, 1983. 5(3): p. 187-197.
60. Bollen, S., Injury to the A2 pulley in rock climbers. The Journal of Hand Surgery: British & European Volume, 1990. 15(2): p. 268-270.
61. Marco, R.A., et al., Pathomechanics of closed rupture of the flexor tendon pulleys in rock climbers. J Bone Joint Surg Am, 1998. 80(7): p. 1012-19.
62. Tropet, Y., et al., Closed traumatic rupture of the ring finger flexor tendon pulley. The Journal of hand surgery, 1990. 15(5): p. 745-747.
63. Hume, E.L., et al., Biomechanics of pulley reconstruction. J Hand Surg Am, 1991. 16(4): p. 722-30.
64. Franko, O.I., et al., Moment arms of the human digital flexors. Journal of biomechanics, 2011. 44(10): p. 1987-1990.
65. An, K.-N., et al., Tendon excursion and moment arm of index finger muscles. Journal of biomechanics, 1983. 16(6): p. 419-425.
66. An, K.-N., et al., Normative model of human hand for biomechanical analysis. Journal of biomechanics, 1979. 12(10): p. 775-788.
67. Koh, S., et al., Intrinsic muscle contribution to the metacarpophalangeal joint flexion moment of the middle, ring, and small fingers. The Journal of hand surgery, 2006. 31(7): p. 1111-1117.
68. Landsmeer, J., Studies in the anatomy of articulation. I. The equilibrium of the" intercalated" bone. Acta Morphologica Neerlando-Scandinavica, 1961. 3: p. 287.
69. Fok, K.S. and S.M. Chou, Development of a finger biomechanical model and its considerations. Journal of biomechanics, 2010. 43(4): p. 701-713.
70. Crowninshield, R.D. and R.A. Brand, A physiologically based criterion of muscle force prediction in locomotion. Journal of biomechanics, 1981. 14(11): p. 793-801.
71. Fasham, M., H. Ducklow, and S. McKelvie, A nitrogen-based model of plankton dynamics in the oceanic mixed layer. Journal of Marine Research, 1990. 48(3): p. 591-639.
72. Long, C. and M. Brown, Electromyographic Kinesiology of the Hand: Muscles Moving the Long Finger. Journal of Occupational and Environmental Medicine, 1967. 9(9): p. 481.
73. Li, Z.M., V.M. Zatsiorsky, and M.L. Latash, Contribution of the extrinsic and intrinsic hand muscles to the moments in finger joints. Clin Biomech (Bristol, Avon), 2000. 15(3): p. 203-11.
74. Dennerlein, J.T., et al., Tensions of the flexor digitorum superficialis are higher than a current model predicts. Journal of biomechanics, 1998. 31(4): p. 295-301.
75. Kursa, K., et al., In vivo flexor tendon forces increase with finger and wrist flexion during active finger flexion and extension. Journal of Orthopaedic Research, 2006. 24(4): p. 763-769.
76. Nikanjam, M., et al., Finger flexor motor control patterns during active flexion: An in vivo tendon force study. Human movement science, 2007. 26(1): p. 1-10.
77. Schuind, F., et al., Flexor tendon forces: in vivo measurements. The Journal of hand surgery, 1992. 17(2): p. 291-298.
78. Uchiyama, S., et al., Method for the measurement of friction between tendon and pulley. Journal of Orthopaedic Research, 1995. 13(1): p. 83-89.
79. Schweizer, A., et al., Friction between human finger flexor tendons and pulleys at high loads. Journal of biomechanics, 2003. 36(1): p. 63-71.
80. Bunata, R.E., et al., Primary tendon sheath enlargement and reconstruction in zone 2: an in vitro biomechanical study on tendon gliding resistance. The Journal of hand surgery, 2009. 34(8): p. 1436-1443.
81. Gellman, H., et al., Analysis of pinch and grip strength after carpal tunnel release. The Journal of hand surgery, 1989. 14(5): p. 863-864.
82. Katz, J.N., et al., Symptoms, functional status, and neuromuscular impairment following carpal tunnel release. The Journal of hand surgery, 1995. 20(4): p. 549-555.
83. Sancho-Bru, J.L., et al., Grasp modelling with a biomechanical model of the hand. Comput Methods Biomech Biomed Engin, 2014. 17(4): p. 297-310.