簡易檢索 / 詳目顯示

研究生: 温祺瑞
Wen, Chi-Ruei
論文名稱: 數位控制應用於不斷電系統之SiC功率因數修正轉換器
SiC Power Factor Correction Converter Applied in Uninterruptible Power System with Digital Control
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 115
中文關鍵詞: 不斷線系統VIENNA PFC數位控制SiC平均電流控制法CCM boost PFC
外文關鍵詞: Uninterruptible power systems, VIENNA PFC, Digital control, SiC, Average current control, CCM boost PFC
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在於不斷電系統之功率因數修正轉換器上使用SiC,透過SiC之高頻以及本身較低的功率損耗特性,俾以提升整體系統功率密度以及效率。本文所提系統使用單相VIENNA PFC作為主架構,其操作在連續導通模式,並應用數位控制。所採數位控制,係以取樣電路傳送訊號至微控制器進行控制器計算,再由MCU產生脈衝寬度調變訊號激勵驅動電路,實現閉迴路控制單相VIENNA PFC。文中設計230 VRMS輸入電壓,±400 V輸出電壓,開關頻率為100 kHz之單相VIENNA PFC,同時針對單相VIENNA PFC進行平均電流控制之迴路分析,設計數位濾波器。本文MCU使用TMS320F28379D撰寫數位濾波器程式,電壓與電流迴路數位濾波器皆為PI控制器。最終實現一100 kHz SiC單相VIENNA PFC,輸出功率707.20 W,效率97.16%。

    This research is aimed to use SiC in the power factor correction converter of the uninterruptible power system. Through the high frequency and low power loss characteristics of SiC, the overall system power density and efficiency can be improved. The system proposed in this thesis uses a single-phase VIENNA PFC as the main architecture, which operated in continuous conduction mode and applies digital control. The adopted digital control used the sampling circuit to send the signal to the microcontroller unit for controller calculation, and then the MCU generated the pulse width modulation signal to excite the driving circuit to realize the closed-loop control of the single-phase VIENNA PFC. In this thesis, a single-phase VIENNA PFC with 230 VRMS input voltage, ±400 V output voltage, and a switching frequency of 100 kHz is designed. At the same time, a digital filter is designed for the loop analysis of the average current control of the single-phase VIENNA PFC. The MCU in this article uses TMS320F28379D to write the digital filter program. Both the voltage and current loop digital filters are PI controllers. Finally, a 100 kHz SiC single-phase VIENNA PFC is realized, the output power is 707.20 W, and the efficiency is 97.16%.

    中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 X 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究背景 4 1-3 研究方法 10 1-4 論文大綱 11 第二章 三階層功因修正轉換器架構分析 12 2-1 前言 12 2-2 三階層功率因數修正轉換器架構之分析 12 2-2-1 三階層中性箝位式功率因數修正轉換器 12 2-2-2 三階層VIENNA功率因數修正轉換器 14 2-2-3 三階層功率因數修正轉換器小結 16 2-3 系統架構選擇 17 第三章 VIENNA功率因數修正轉換器分析及控制 19 3-1 前言 19 3-2 三相四線制VIENNA功因修正轉換器分析 19 3-2-1 單相VIENNA修正轉換器連續導通模式分析 20 3-2-2 正半週之連續導通模式分析 21 3-2-3 負半週之連續導通模式分析 23 3-3 回授控制補償器設計 27 3-3-1 單相VIENNA PFC電流迴路補償器設計 27 3-3-2 單相VIENNA PFC電壓迴路補償器設計 31 第四章 系統數位控制軟體與硬體電路設計 34 4-1 前言 34 4-2 整體系統之硬體電路設計 35 4-2-1 功率級主要架構 35 4-2-2 開關元件以及二極體 37 4-2-3 主架構電感設計 38 4-2-4 輸出電容值設計 41 4-2-5 開關驅動電路設計 42 4-2-6 訊號取樣電路設計 48 4-2-7 主電感電流取樣電路設計 49 4-2-8 輸入交流電壓取樣電路設計 51 4-2-9 輸出電壓取樣電路設計 55 4-3 單相VIENNA PFC數位控制軟體規劃 58 4-3-1 使用的微控制器介紹 59 4-3-2 更新PWM程式流程 63 4-3-3 PWM模塊程式 64 4-3-4 ADC模塊設定 70 4-3-5 中斷控制迴路的計算 73 第五章 系統模擬與實驗量測 80 5-1 前言 80 5-2 單相VIENNA功率因數修正轉換器模擬 80 5-3 單相VIENNA功率因數修正轉換器量測 94 第六章 結論與未來研究方向 108 6-1 結論 108 6-2 未來研究方向 109 參考文獻 110

    [1] K. H. Liu and F. C. Y. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Trans. Power Electron., vol. 5, no. 3, pp. 293-304, Jul. 1990.
    [2] 李晉,解析未來五年SiC/GaN市場應用態勢,2022年。[Online]. Available:https://www.eettaiwan.com/20211119nt61-sic-gan-market-an-d-application-trend/
    [3] U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, “GaN-based RF power devices and amplifiers,” Proc. IEEE, vol. 96, no. 2, pp. 287-305, Feb. 2008.
    [4] 林妤柔,沒有取代前兩代技術,第三代半導體「正確名稱」該怎麼叫,2022年。[Online]. Available:https://technews.tw/2021/11/05/compound-semiconductor-sic-gan/
    [5] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high power telecommunications rectifiers modules,” IEEE Trans. Ind. Electron., vol. 44, pp. 456-467, Aug. 1997.
    [6] Y. Gao, H. Guan, Z. Qi, B. Wang, and L. Liu, “Quality of service aware power management for virtualized data centers,” J. Syst. Architect., vol. 59, no. 4, pp. 245-259, Apr. 2013.
    [7] J. M. Guerrero, L. G. D. Vicuna, and J. Uceda, “Uninterruptible power supply systems provide protection,” IEEE Ind. Electron. Mag., vol. 1, no. 1, pp. 28-38, May. 2007.
    [8] C. C. Yeh and M. D. Manjrekar, “A reconfigurable uninterruptible power supply system for multiple power quality applications,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1361-1372, Jul. 2007.
    [9] M. T. Tsai and C. H. Liu, “Design and implementation of a cost-effective quasi line-interactive UPS with novel topology,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 1002-1011, Jul. 2003.
    [10] D. Shahzad, S. Pervaiz, N. A. Zaffar, and K. K. Afridi, “GaN-based high-power-density AC–DC–AC converter for single-phase transformerless online uninterruptible power supply,” IEEE Trans. Power Electron., vol. 36, no. 12, pp. 13968-13984, Jun. 2021.
    [11] C. C. Yeh and M. D. Manjrekar, “A reconfigurable uninterruptible power supply system for multiple power quality applications,” in Twentieth Annu. IEEE APEC, vol. 22, no. 4, pp.1048-2334, Mar. 2005.
    [12] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high power telecommunications rectifiers modules,” IEEE Trans. Ind. Electron., vol. 44, pp. 456-467, Aug. 1997.
    [13] M. H. Park, J. I. Baek, Y. Jeong, and G.-W. Moon, “An interleaved totem-pole bridgeless boost PFC converter with soft-switching capability adopting phase-shifting control,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 10610-10618, Nov. 2019.
    [14] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems—part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, Jan. 2013.
    [15] 鐘永祺,應用於固態變壓器之輸入串聯輸出並聯電源轉換器研製,國立成功大學電機工程學系碩士論文,2020年。
    [16] 陳立哲,應用於高頻VIENNA功因修正轉換器之柔性切換電路,國立成功大學電機工程學系碩士論文,2021年。
    [17] L. Schrittwieser, P. Cortes, L. Fässler, D. Bortis, and J. W. Kolar, “Modulation and control of a three-phase phase-modular isolated matrix-type PFC rectifier,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4703-4715, Jul. 2017.
    [18] H. Luo, J. Xu, D. He, and J. Sha, “Pulse train control strategy for CCM boost PFC converter with improved dynamic response and unity power factor,” IEEE Trans. Ind. Electron., vol. 67, no. 12, pp.10377-10387, Jan. 2020.
    [19] M. T. Zhang, Y. Jiang, F. C. Lee, and M. M. Jovanovic, “Single-phase three-level boost power factor correction converter,” in Proc. of 1995 IEEE APEC, pp. 434–439, Mar. 1995.
    [20] A. Kouchaki and M. Nymand, “Analytical design of passive LCL filter for three-phase two-level power factor correction rectifiers,” IEEE Trans. Power Electron., vol. 33, no. 4, pp. 3012-3022, Apr. 2018.
    [21] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems—part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, Feb. 2014.
    [22] S. Ohn, J. Yua, P. Rankin, B. Sun, R. Burgos, D. Boroyevich, H. Suryanarayana, and C. Belcastro, “Three-terminal common-mode EMI model for EMI generation, propagation, and mitigation in a full-SiC three-phase UPS module,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 8599-8612, Sep. 2019.
    [23] M. Hartmann, S. D. Round, H. Etrl, and J. W. Kolar, “Digital current controller for a 1 MHz, 10 kW three-phase VIENNA rectifier,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2496-2508, Nov. 2009.
    [24] 趙育鋮,應用於不斷電系統之三相四線制整流器研製,國立成功大學電機工程學系碩士論文,2021年。
    [25] J. Minibock and J. W. Kolar, “Novel concept for mains voltage proportional input current shaping of a VIENNA rectifier eliminating controller multipliers,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 162-170, Feb. 2005.
    [26] P. Karutz, S. D. Round, M. L. Heldwein and J. W. Kolar, “Ultra compact three-phase PWM rectifier,” in Proc. 22nd Annu. IEEE APEC, Feb. 2007, pp. 1048-2334.
    [27] A. Nabae, I Takahashi, and H. Akagi, “A new neutral-point-clamped PWM inverter,” IEEE Trans. Ind. Appl., vol. IA-17, pp. 518-523, Sep. 1981.
    [28] N. Altin and S. Ozdemir, “A three-level MPPT capability rectifier for high power direct drive WECS,” in 2012 ICRERA, Nov. 2012.
    [29] N. Schechter and A. Kuperman, “Zero-sequence manipulation to maintain correct operation of NPC-PFC rectifier upon neutral line disconnection and reconnection,” IEEE Trans. Ind. Appl., vol. 64, no. 1, pp. 866-872, Jan. 2017.
    [30] J. Kolar and F. Zach, “A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 456–467, Aug. 1997.
    [31] R. J. Tu and C. L. Chen, “A new three-phase space-vector-modulated power factor corrector,” in Proc. of 1994 IEEE APEC, Feb. 1994.
    [32] S. Kim and P. Enjeti, “A new three phase AC to DC rectifier with active power factor correction,” in Proc. of 1994 IEEE APEC, Feb. 1994.
    [33] Y. Zhao, Y. Li, and T. A. Lipo, “Force commutated three level boost type rectifier,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 155-161, Jan. 1995.
    [34] Q. Wang, X. Zhang, R. Burgos, D. Boroyevich, A. M. White and M. Kheraluwala, “Design and implementation of a two-channel interleaved Vienna-type rectifier with >99% efficiency,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 226-239, Jan. 2018.
    [35] M. Xie, “Digital control for power factor correction,” Oct. 2021. [Online]. Available:https://vtechworks.lib.vt.edu/handle/10919/34258
    [36] M. Bhardwaj and C. Jiang, “Vienna rectifier-based, three-phase power factor correction (PFC) reference design using C2000™ MCU,” Apr. 2022. [Online]. Available:https://www.ti.com/lit/ug/tiducj0g/tiducj0g.pd-f?ts=1648372533174
    [37] MS-184060-2 Datasheet, Micrometals, 2014.
    [38] NVH4L080N120SC1 Datasheet, Infineon, 2019.
    [39] IDH16G120C5 Datasheet, Infineon, 2017.
    [40] U-134 application note, Texas Instruments, 1999.
    [41] Z. Yu,電容隔離:AC/DC功率轉換產品貴來基本組成部件,新北市:MPS。
    [42] UCC21520 Datasheet, Texas Instruments, 2016.
    [43] RKZ-152005D Datasheet, RECOM, 2018.
    [44] 閘極驅動器電源需求,瑞士:POWER YOUR CORE-CTC頻譜電子,2021年。
    [45] A. Paultre,讓電流感測更精確的AMR技術,2019年。[Online]. Available:https://www.eettaiwan.com/2190320ta31-talking-current-sen-sing-with-john-newton-and-mike-horton-of-aceinna/
    [46] ACS733 Datasheet, ALLEGRO, 2019.
    [47] AMC1301 Datasheet, TEXAS INSTRUMENTS, 2020.
    [48] OPA320 Datasheet, TEXAS INSTRUMENTS, 2011.
    [49] “LAUNCHXL-F28379D Overview,” Aug. 2016. [Online]. Available:https://www.ti.com/lit/ug/sprui77c/sprui77c.pdf?ts=1652667011911&re-f_url=https%253A%252F%252Fwww.ti.com%252Ftool%252FLAUNC-HXL-F28379D.
    [50] TMS320F28379D Datasheet, TEXAS INSTRUMENTS, 2013.
    [51] TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual, TEXAS INSTRUMENTS, 2013.
    [52] Z. D. Lee,混合式數位與全數位電源控制實戰,新北:全華,2021。

    無法下載圖示 校內:2027-08-05公開
    校外:2027-08-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE