| 研究生: |
陳柏安 Chen, Po-An |
|---|---|
| 論文名稱: |
非侵入式頻域光子遷移檢測系統之微型化接收機研製 Investigation and Design of Miniature Receivers for Non-Invasive Frequency Domain Photon Migration Examination Systems |
| 指導教授: |
楊慶隆
Yang, Chin-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 頻域光子遷移 、鏡像抑制混頻器 、基於網路分析儀系統 |
| 外文關鍵詞: | FDPM, image rejection mixer, NA-based system |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一種即時、非侵入式的組織癌症檢測器,此檢測機制結合光學FDPM技術與電子電路接收機。一般FDPM光學檢測機制之接收機為網路分析儀,其缺點為昂貴(通常台幣百萬起跳)、笨重、不易攜帶。本文提出了一種取代部分傳統網路分析儀功能之FDPM接收機,達到低成本(數千元台幣)並且可攜(約23 cm × 11 cm × 5 cm)的優勢。FDPM技術為透過分析雷射光進入組織且反射後的振幅以及相位改變,並且透過演算法推得吸收以及散射系數來判斷組織的異常。本論文實現兩種接收機,一為非同源超外差接收機,使用振幅補償消除額外的相位誤差,對於相位量測的解析度以及精準度有大幅的提升。另一架構為同源鏡像抑制接收機,消除了同源架構下所產生的相位抵銷問題,並且將部分電路數位化來消除、補償類比電路造成的非理想效應。FDPM實驗使用780 nm的雷射二極體並且使用成功大學光電所自製的假體當作待測物,所量測到的相位以及振幅變化量,再利用Matlab code分析推算成吸收係數(μa)以及散射系數(μs’)並且與網路分析儀所的結果作比較。非同源架構下,自製電路與網路分析儀所量得的相位以及振福變化量誤差分別低於0.2°以及5%,吸收和散射係數誤差約為10 %及3 %。而同源架構下待測物為SP12時,自製電路與網路分析儀所量得的相位以及振福變化量平均誤差分別低於0.35°以及2.5 %,相位變異度低於0.13°,與網路分析儀相近,吸收和散射係數誤差分別為4.67 %以及3.38 %。為了在未來達到完全取代儀器,本研究同時tape out了一0.18 μm製程PLL晶片,可望在未來能夠加入系統,完全取代網路分析儀的發射端功能。相關的設計流程呈現於本篇論文的附錄。
Two miniature FDPM receivers is achieved in this thesis to replace the partial function of the NA-based system. Due to the compact receiver, it can be cost-down and be portable. The first one is a separate signal sources structure with extra phase error elimination. Also, Noise analysis is applied to estimate the system performance. The second receiver is a joint signal source structure to reduce the number of high frequency signal sources. Phase cancellation problem caused by joint signal source is solved by adding image rejection mixer. Severe amplitude variation caused by signal non-synchronous can also be solved by the joint signal source structure. The average amplitude and phase error of the separate structure are less than 8 % and 0.2°, respectively. The error of absorb and scatter coefficient are about 10 % and 3 %, respectively. Also, the average amplitude and phase error of the joint structure are less than 2.5% and 0.35°. The error of absorb and scattering coefficient are about 4.67 % and 3.38 %, respectively. These results show that the miniature receivers can achieve low error compared to the NA-based system with thousand times cheaper and much smaller size.
[1] J. Zhao, X. L. Hou, B. Chance, C. Le Zhou, and H. S. Ding, "In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy," Journal of biomedical optics, vol. 10, pp. 024028-0240287, 2005.
[2] B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, et al., "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia (New York, NY), vol. 2, p. 26, 2000.
[3] K. S. No and P. H. Chou, "Mini-FDPM and heterodyne Mini-FDPM: Handheld non-invasive breast cancer detectors based on frequency-domain photon migration," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, pp. 2672-2685, 2005.
[4] 郭文娟, "非侵入式生醫斷層影像簡介," 物理雙月刊, vol. 二十八卷四期, 2006年8月.
[5] Available: http://itri.org.tw/chi/news/detail.asp?RootNodeId=060&NodeId=061&NewsID=674
[6] J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, "Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject," Applied Optics, vol. 36, pp. 10-20, 1997.
[7] Available: http://udn.com/NEWS/HEALTH/HEA2/8329059.shtml
[8] Available: http://website.tpech.gov.tw/cancer/
[9] Y. Q. C. Gros, and Y. Hummel, "Diaphanologie mammaire," J. Radiol. Electrol. Med. Nucl, vol. 53, pp. 297–306, 1972.
[10] E. Carlsen, "Transillumination light scanning," Diagn. Imag, vol. 4, pp. 28–34, 1982.
[11] B.-C. Wang, "A landslide monitoring technique based on dual-receiver and phase difference measurements," Geoscience and Remote Sensing Letters, IEEE, vol. 10, pp. 1209-1213, 2013.
[12] K.-Y. Lee, C.-F. Huang, S.-S. Huang, K.-N. Huang, and M.-S. Young, "A high-resolution ultrasonic distance measurement system using vernier caliper phase meter," IEEE Transactions on Instrumentation and Measurement, vol. 61, pp. 2924-2931, 2012.
[13] Z. Lei, G. Xingshun, H. Xiaofang, L. Shubin, and A. Qi, "Beam Position and Phase Measurement System for the Proton Accelerator in ADS," IEEE Transactions on Nuclear Science, vol. 61, pp. 538-545, 2014.
[14] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, "Phase-and Self-Injection-Locked Radar for Detecting Vital Signs with Efficient Elimination of DC Offsets and Null Points," IEEE Transactions on Microwave Theory and Techniques, vol. 61, pp. 685-695, 2013.
[15] J. L. Hogan Jr, "The Heterodyne Receiving System, and Notes on the Recent Arlington-Salem Tests," Proceedings of the Institute of Radio Engineers, vol. 1, pp. 75-91, 1913.
[16] J. Carr, RF components and circuits: Newnes, 2002.
[17] K. Asparuhova and E. D. Gadjeva, "Noise analysis of operational amplifier circuits using MATLAB," 27th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, , 2004, pp. 471-475.
[18] T. Ichikawa and H. Iwasaki, Superheterodyne receiver: Google Patents, 1988.
[19] G. L. Matthaei, L. Young, and E. Jones, Microwave filters, impedance-matching networks, and coupling structures vol. 5: McGraw-Hill New York, 1964.
[20] M. Zahid, J.S. Smith, J. Lucas, "High-frequency phase measurement for optical rangefinding system," in IEE Proc. Sci. Meas. Technol., vol.144, no.3, pp.141-148, May 1997.
[21] J. Millman and A. Grabel, Microelectronics: McGraw-Hill, Inc., 1987.
[22] S. J. Fang, A. Bellaouar, S. T. Lee, and D. J. Allstot, "An image-rejection down-converter for low-IF receivers," IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 478-487, 2005.
[23] S. Lerstaveesin and B.-S. Song, "A complex image rejection circuit with sign detection only," IEEE Journal of Solid-State Circuits, vol. 41, pp. 2693-2702, 2006.
[24] C.-C. Chen and C.-C. Huang, "On the architecture and performance of a hybrid image rejection receiver," IEEE Journal on Selected Areas in Communications, vol. 19, pp. 1029-1040, 2001.
[25] D. Ozis, J. Paramesh, and D. J. Allstot, "Integrated quadrature couplers and their application in image-reject receivers," IEEE Journal of Solid-State Circuits, vol. 44, pp. 1464-1476, 2009.
[26] J.-A. Hou and Y.-H. Wang, "A compact quadrature hybrid based on high-pass and low-pass lumped elements," Microwave and Wireless Components Letters, IEEE, vol. 17, pp. 595-597, 2007.
[27] D. Ozis, J. Paramesh, and D. J. Allstot, "Analysis and design of lumped-element quadrature couplers with lossy passive elements," IEEE International Symposium on Circuits and Systems, pp. 4 pp.-2320, 2006.
[28] Available: http://www.cqinc.com.tw/grandsoft/cm/110/axt.htm
[29] S.-P. Yeh, Measuring the Optical Properties of Superficial Turbid Sample Using the Steady State Frequency Domain Photon Migration System, Biophotonics Lab, National Cheng Kung University, pp.16-23, 2012.
[30] F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Applied optics, vol. 39, pp. 6498-6507, 2000.
[31] W. S. T. Yan and H. C. Luong, "A 900-MHz CMOS low-phase-noise voltage-controlled ring oscillator," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, pp. 216-221, 2001.
[32] A. Hajimiri, S. Limotyrakis, and T. H. Lee, "Phase noise in multi-gigahertz CMOS ring oscillators," Proceedings of the IEEE in Custom Integrated Circuits Conference, pp. 49-52, 1998.
[33] T. I. Ahrens and T. H. Lee, "A 1.4-GHz 3-mW CMOS LC low phase noise VCO using tapped bond wire inductances," International Symposium on Low Power Electronics and Design, pp. 16-19, 1998.
[34] "Phase noise PN9000 product line," ed: Aeroflex, 2003.
[35] B. Fan, L.-s. Li, Z.-q. Chu, D.-h. Wang, and C.-h. Hou, "A 10 MHz to 600 MHz low jitter CMOS PLL for clock multiplication," 9th International Conference on Solid-State and Integrated-Circuit Technology, pp. 1929-1932, 2008.
[36] S. Lee, S. Amakawa, N. Ishihara, and K. Masu, “Low-phase-noise wide-frequency-range ring-VCO-based scalable PLL with subharmonic injection locking in 0.18 µm CMOS,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1178–1181, May. 2010.
[37] Van Helleputte, N.; Gielen, G.; “An Ultra-Low-Power Quadrature PLL in 130nm CMOS for Impulse Radio Receivers,” Biomedical Circuits and Systems Conference, pp. 63-66, Nov. 2007.
校內:2019-08-15公開