簡易檢索 / 詳目顯示

研究生: 蕭定承
Hsiao, Ding-Cheng
論文名稱: 應用於衛星姿態控制之反應輪無槽式永磁同步馬達設計
Design of Slotless Permanent Magnet Synchronous Motor for Reaction Wheel Applied to Satellite Attitude Control
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 77
中文關鍵詞: 反應輪無槽式軸向永磁同步馬達慣量分析效率最佳化
外文關鍵詞: Reaction wheel, slotless axial permanent magnet synchronous motor, inertia analysis, efficiency optimization
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來國內對太空相關研發技術愈來愈重視,但對於衛星相關組件之研發技術仍尚未成熟,因此關鍵零組件之開發更是各研究單位之研發重點。而其中反應輪(Reaction Wheel)為衛星姿態控制的關鍵組件,利用轉動物件角動量守恆的物理特性,透過控制器改變反應輪之運轉速度,使轉動物件之角動量產生變化,獲得扭力輸出,以改變衛星的姿態。
    本文針對適用於反應輪之無槽式軸向馬達以及無槽式外轉子徑向馬達進行慣量分析,設計出在符合目標轉矩下,每單位可提供較大角動量之馬達。首先推導軸向馬達設計所需之參數,並藉由電磁模擬驗證其正確性,以及探討無槽式馬達之繞組對馬達影響,並改善其缺點。再來將軸向馬達以及徑向馬達在同樣的空間限制以及皆可達到目標之電磁性能下,針對其轉動物件進行轉動慣量之分析。接著從獲得之馬達規格透過電磁模擬分析其損失來源及比例,在不影響輸出性能下,使其效率最佳化。
    最後得一高慣量密度,且高效率之反應輪馬達設計。

    In recent years, domestic space-related R&D technology has become more and more important while the research and development technology for satellite-related components has been still not mature. Hence, the development of key components has become the focus of the research and development in each research unit. The reaction wheel is one of the key components in terms of satellite attitude control. Using the physical characteristics of the angular momentum conservation of the rotating object and changing operating speed of the reaction wheel by the controller may change the angular momentum of the rotating object to obtain the output torque to change the attitude of the satellite.
    In this thesis, the inertia analysis is carried out for the slotless axial permanent magnet synchronous motor and the slotless outer rotor radial motor which are suitable for the reaction wheel. The motor is designed to provide a large angular momentum per unit under the target torque. First, the parameters required for the design of the axial motor are derived, the correctness is verified by electromagnetic simulation, the influence of the winding of the slotless motor on the motor is discussed, and the shortcomings are improved. Then, the axial motor and the radial motor are analyzed for the moment of inertia of the rotating object under the same space limitation and the electromagnetic properties of the target. From the obtained motor specifications, the source and proportion of the loss are analyzed through electromagnetic simulation, and the efficiency is optimized without affecting the output performance.
    Finally, a high inertia density and high efficiency reaction wheel motor design is obtained.

    第一章 緒論 1 1.1 研究背景 1 1.2 馬達種類 2 1.2.1 直流有刷馬達 2 1.2.2 永磁同步馬達 3 1.3 研究動機與目的 5 1.4 論文架構 7 第二章 文獻回顧 8 2.1 反應輪馬達 8 2.1.1 馬達轉矩漣波 8 2.1.2 無槽式馬達 9 2.2 國外市售反應輪分析 12 2.3 小結 13 第三章 研究方法 14 3.1 前言 14 3.2 無槽式軸向馬達設計 19 3.2.1 軸向馬達之反電動勢常數推導 19 3.2.2 無槽式馬達繞組設計 21 3.3 慣量分析 24 3.3.1 相同規格下之慣量分析 24 3.3.2 不同直徑-高度比之慣量分析 30 3.3.3 不同氣隙磁通密度之慣量分析 36 3.4 小結 45 第四章 設計模擬特性評估 46 4.1 效率分析 46 4.1.1 軸向馬達及徑向馬達之效率趨勢 47 4.1.2 效率優化方法 52 4.2 轉動慣量計算模擬 57 4.3 外轉式徑向馬達設計特性分析 60 4.4 反應輪架構比較 63 第五章 原型機實作 66 5.1 馬達磁鐵最終選用 66 5.2 原型機加工 68 5.2.1 定子繞線配置 68 5.2.2 矽鋼片加工 68 第六章 結論與建議 70 6.1 結論 70 6.2 建議 72 參考文獻 73

    [1] 國家太空中心,福爾摩沙衛星七號,Available: https://www.nspo.narl.
    org.tw/tw2015/projects/FORMOSAT-7/program-description.html

    [2] 科技政策研究與資訊中心,(2019, Jun. 30). 福衛七號升空,自製率接近100%,Available: https://money.udn.com/money/story/5612/3900445

    [3] Sinclair Interplanetary. Reaction Wheels. Available: http://www.sinclairin
    terplanetary.com/reactionwheels

    [4] 南台科技大學,馬達介紹。Available: http://faculty.stust.edu.tw/~liusir
    /Ch05/05-02-Motor.htm

    [5] M. R. A. Pahlavani, Y. S. Ayat, and A. Vahedi, “Minimisation of Torque Ripple in Slotless Axial Flux BLDC Motors in Terms of Design Considerations,” IET Electric Power Applications, vol. 11, no. 6, pp. 1124-1130, July 2017.

    [6] M. Shokri, N. Rostami, V. Behjat, J. Pyrhönen, and M. Rostami, “Comparison of Performance Characteristics of Axial-Flux Permanent-Magnet Synchronous Machine With Different Magnet Shapes,” IEEE Transactions on Magnetics, vol. 51, no. 12, pp. 1-6, Dec. 2015.

    [7] M. Gulec and M. Aydin, “Influence of Magnet Grouping in Reduction of Cogging Torque for a Slotted Double-Rotor Axial-Flux PM Motor,” in Proceedings of International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, Sorrento, 2012, pp. 812-817.

    [8] T. Liu, S. Huang, and J. Gao, “A Method for Reducing Cogging Torque by Magnet Shifting in Permanent Magnet Machines,” in Proceedings of 2010 International Conference on Electrical Machines and Systems, Incheon, 2010, pp. 1073-1076.

    [9] P. Kumar, M. M. Reza, and R. K. Srivastava, “Effect of Cogging Torque Minimization Techniques on Performance of an Axial Flux Permanent Magnet Machine,” in Proceedings of 2017 IEEE Transportation Electrification Conference (ITEC-India), Pune, 2017, pp. 1-6.

    [10] P. Kumar and R. K. Srivastava, “Cost-Effective Stator Modification Techniques for Cogging Torque Reduction in Axial Flux Permanent Magnet Machines,” in Proceedings of 2018 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Bangkok, 2018, pp. 1-5.

    [11] J. Wanjiku, M. A. Khan, P. S. Barendse, and P. Pillay, “Influence of Slot Openings and Tooth Profile on Cogging Torque in Axial-Flux PM Machines,” IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7578-7589, Dec. 2015.

    [12] M. Aydin, S. Huang, and T. A. Lipo, “Optimum Design and 3D Finite Element Analysis of Nonslotted and Slotted Internal Rotor Type Axial Flux PM Disc Machines,” in Proceedings of 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262), vol. 3, Vancouver, BC, Canada, 2001, pp. 1409-1416.

    [13] N. Bianchi and S. Bolognani, “Design Techniques for Reducing The Cogging Torque in Surface-Mounted PM Motors,” IEEE Transactions on Industry Applications, vol. 38, no. 5, pp. 1259-1265, Sept.-Oct. 2002.

    [14] W. Fei and P. C. K. Luk, “Torque Ripple Reduction of Axial Flux Permanent Magnet Synchronous Machine With Segmented and Laminated Stator,” in Proceedings of 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, 2009, pp. 132-138.

    [15] H. Lin, D. Wang, D. Liu, and J. Chen, “Influence of Magnet Shape on Torque Behavior in Surface-Mounted Permanent Magnet Motors,” in Proceedings of 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, 2014, pp. 44-47.

    [16] M. F. Hsieh and Y. S. Hsu, “An Investigation on Influence of Magnet Arc Shaping Upon Back Rlectromotive Force Waveforms for Design of Permanent-Magnet Brushless Motors,” IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 3949-3951, Oct. 2005.

    [17] M. Aydin and M. Gulec, “Reduction of Cogging Torque in Double-Rotor Axial-Flux Permanent-Magnet Disk Motors: A Review of Cost-Effective Magnet-Skewing Techniques With Experimental Verification,” IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 5025-5034, Sept. 2014.

    [18] M. Aydin, S. Huang, and T. A. Lipo, “Torque Quality and Comparison of Internal and External Rotor Axial Flux Surface-Magnet Disc Machines,” in Proceedings of IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243), vol. 2, Denver, CO, USA, 2001, pp. 1428-1434.

    [19] J. Choi, S. Lee, K. Ko, and S. Jang, “Improved Analytical Model for Electromagnetic Analysis of Axial Flux Machines With Double-Sided Permanent Magnet Rotor and Coreless Stator Windings,” IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 2760-2763, Oct. 2011.

    [20] Bradford. Reaction Wheel Unit. Available: http://bradford-space.com/products-aocs-reaction-wheel-unit.php

    [21] Vectronic Aerospace GmbH. Reaction Wheel VRW-1. Available: https://
    www.vectronic-aerospace.com/space-applications/reaction-wheel-vrw-1/

    [22] J. Zhou and K. J. Tseng, “A Disk-Type Bearingless Motor for Use as Satellite Momentum-Reaction Wheel,” in Proceedings of 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference Proceedings (Cat. No.02CH37289), vol. 4, Cairns, Qld., Australia, 2002, pp. 1971-1975.

    [23] J. Wu, “Design of a Miniature Axial Flux Flywheel Motor With PCB Winding for Nanosatellites,” in Proceedings of 2012 International Conference on Optoelectronics and Microelectronics, Changchun, Jilin, 2012, pp. 544-548.

    [24] Astro-und Feinwerktechnik Adlershof GmbH. Products. Available: http://www.astrofein.com/eastroundfeinwerktchnikadlershoef/products/raumfahrteng/72/reaktionsraeder-eng/

    [25] Blue Canyon Technologies. Components. Available: https://bluecanyontech.com/components

    [26] D. C. Hanselman, Brushless Permanent Magnet Motor Design, 2nd ed. The Writer’s Collective, 2003.

    [27] Collins Aerospace. RSI45 Momentum and Reaction Wheels. Available: ht
    tps://www.rockwellcollins.com/Products-and Services/Defense/Platfor ms/Space/RSI-45-Momentum-and-Reaction-Wheels.aspx

    [28] 磐石高級中學,直流電機損耗與效率,Available: http://www.sphs.hc.edu.tw/ischool/public/resource_view/open.php?file=5c19f945ac13021f881d8aad2f551e48.pdf

    [29] 泰樂科技有限公司,釹鐵硼磁鐵物理特性,Available: http://www.teslar-tech.com.tw/feature2.html

    [30] Shin-Etsu Chemical. N Series Line up. Available: http://www.shinetsu-rare-earth-magnet.jp/e/products/data_nd.html

    [31] 泰樂科技有限公司,鐵氧體燒結磁石介紹,Available: http://www.teslar-tech.com.tw/about3.html

    [32] 秀越實業,粘結釹鐵硼磁石介紹,Available: http://www.supermaxtw.com/main/index.php?action=product_detail&id =23

    [33] 上鋼股份有限公司,電磁鋼捲介紹,Available: http://www.taiwan-steel.com/product01.html

    無法下載圖示 校內:2024-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE