簡易檢索 / 詳目顯示

研究生: 陳姿雅
Chen, Tzu-Ya
論文名稱: 比較平甩功與甩手運動對健康促進的效果
Comparison of Effects of Ping Shuai Gong and Arm Swing Exercise on Health Promotion
指導教授: 蘇芳慶
Su, Fong-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 69
中文關鍵詞: 平甩功甩手運動低強度運動心血管系統腦血管系統微循環血流平衡
外文關鍵詞: Ping Shuai Gong, Arm Swing Exercise, low intensity exercise, cardiovascular system, cerebrovascular system, microcirculatory blood flow, balance
相關次數: 點閱:100下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著老化社會的發展,老年人口的健康議題與社交系統變成不可忽視的議題。在老化過程中,身體機能的退化、慢性病的產生、生理與認知的衰退,都會惡化功能與社會參與的表現。而運動帶來的,是心血管、腦血管、身體機能上的進步。然而,對年長者而言,有些運動可能使年長者更容易受傷或是困難度太高而難以執行。甩手運動(後面用平甩功(Ping Shuai Gong, PSG)與小範圍
    快速甩手動作(簡稱 Arm Swing Exercise, ASE)做討論)因為難度低、空間需求小而很受老人家的歡迎。
    此次研究旨在探討兩種不同甩手策略對健康帶來的效果,並藉由生理與動作上的變化討論健康改變的機轉。40 位 60 歲以上沒有固定運動習慣的老人會被分為 PSG 組與 ASE 組,並分別給予各組兩個月(至少執行 24 天運動,30 分以上/天)的運動訓練。PSG 組被要求執行 PSG 練習動作(動作為雙手同步平舉至肩膀高度後往下、往後甩動,至第五下時搭配兩下蹲彈動作)。ASE 組被要求執行ASE 練習動作(動作為雙手同步舉至 30 度彎曲後 60 度肩膀後伸,且控制甩手時上半身的穩定性)。前測與後測的測驗流程完全相同,最後共 27 人完成前後測與兩個月動作練習。
    在運動特性上,PSG 和 ASE 運動的切線加減速和減速週期差異最大。經過兩個月的訓練,PSG 組的收縮壓明顯低於 ASE 組。在高血壓參與者中,經過兩個月的手臂擺動類型運動介入後,血管舒縮活動得到改善。大腦活化表現上,兩組的腦區都呈現大範圍、高強度活化,但兩組動作在訓練前後的腦區活化沒有顯著差異。兩組在平衡表現上,有下蹲動作的 PSG 確實顯著增加下肢力量。
    控制上半身穩定性的 ASE 動作,確實也顯著改變動態平衡能力和跌倒風險。
    未來研究可以增加樣本數、更嚴謹的實驗設計與延長介入時間,以擴展研究發現。

    With the development of an aging society, the health and social systems of the elderly population have become issues that cannot be ignored. In the process of aging,
    the deterioration of body functions, the occurrence of chronic diseases, and the decline of physiology and cognition would worsen the performance of function and
    social participation. Therefore, what exercise brings is the advancement of cardiovascular, cerebrovascular, and body functions. However, for the elderly, some types of exercise may make the elderly more likely to be injured or too difficult to perform. Arm-swinging exercises (Ping Shuai Gong (PSG) and small-range quick arm-swinging exercise (Arm Swing Exercise (ASE) are discussed later) because of their low difficulty and small space requirements, and that making PSG and ASE very popular within the older populatiom. The purpose of this study is to explore the health effects of two different arm-swinging strategies, and to explore the relationship between characteristics of arm-swinging movement and skin blood flow during exercise. 40 elderly people over 60 years old who have no regular exercise habits
    were divided into PSG group and ASE group, and each group was given two months of exercise training (at least 24 times of exercise, 30 minutes within one day). The PSG group was asked to perform PSG exercises (actions were synchronized with the hands raised to shoulder height and then swinging down and back, with two squatting movements at the fifth time). The ASE group was asked to perform ASE exercises
    (actions were to raise both hands synchronously to a 30-degree bend and then 60-degree shoulder extension, and to control the stability of the upper body when swinging arms). The evaluation procedures of the pretraining evalaution and posttraining evaluation are exactly the same. In the end, a total of 27 people completed twice evaluation and two-month exercise practice.
    In terms of movement characteristics, the tangential acceleration and
    deceleration and deceleration period are the most different between PSG and ASE exercise. After two months training, the systolic blood pressure of the PSG group was significantly lower than that of the ASE group. In participants with hypertension, improved vasomotor activity after two-month arm-swinging type exercise. In terms of brain activation, the brain regions showed large-scale and high-intensity activation,but there was no significant difference between PSG and ASE group in the activation of the brain regions before and after training. In terms of balance performance of the two groups, the PSG with squat action did significantly improve strength of the lower limbs. The ASE movement that controlled the stability of the upper trunk did significantly change the dynamic balance ability and falling risk.
    Further invstigations with a larger sample, more controlled trial, and extended the intervention time are needed to extend these findings.

    CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Study purpose 1 1.3 Hypothesis 1 1.4 Significance for the Study 1 CHAPTER 2 LITERATURE REVIEW 2 2.1 Cardiovascular function 2 2.1.1 Introduction of autonomic nervous system of cardiac, HR, BP, and baroreflex mechanism 2 2.1.2 Introduction of low frequency oscillations 4 2.1.3 Cardiovascular function and aged 5 2.1.4 Exercise effects on cardiovascular system 6 2.2 Cerebral cortex activation 7 2.2.1 Introduction of cerebral cortex 7 2.2.2 Exercise effects on cerebral cortex 8 2.3 Balance function 8 CHAPTER 3 MATERIALS AND METHODS 10 3.1 Participants 10 3.2 Instruments and measures 10 3.2.1 Electrocardiography (ECG) and sphygmomanometer 10 3.2.2 Photoplethysmography (PPG) 11 3.2.3 Motion capture system and force plate 12 3.2.4 Functional near-infrared spectroscopy (fNIRs) 14 3.3 Group allocation 17 3.4 Experimental procedure 18 3.4.1 Procedure 1–1st time (pre-training) evaluation (baseline assessment + exercise) 19 3.4.2 Procedure 2–2 mo. exercise intervention (24-time PSG or ASE training) 21 3.4.3 Procedure 3–2nd time (post-training) evaluation (training effect assessment + exercise) 21 3.5 Data analysis 22 3.5.1 Heart rate (HR) and blood pressure (BP) 22 3.5.2 Heart rate variability (HRV) 22 3.5.3 Arm-swinging tangential velocity and tangential acceleration 25 3.5.4 Blood volume change 27 3.5.5 Low frequency oscillations (LFOs) 30 3.5.6 Brain activation 33 3.5.7 Balance function 35 3.6 Statistical analysis 38 CHAPTER 4 RESEARCH RESULTS 39 4.1 Participant characteristics 39 4.2 Effects of training in cardiovascular function 40 4.2.1 PSG training 40 4.2.2 ASE training 41 4.2.3 Training effects between PSG and ASE groups 42 4.3 Relationships between arm-swinging kinematics and microcirculatory blood flow 46 4.3.1 Exercise effects of vasomotion between PSG and ASE groups 47 4.3.2 Correlation between arm-swinging movement and microcirculatory blood flow 49 4.4 Brain activation in response to PSG and ASE 51 4.5 Effects of PSG and ASE training on balance ability 55 CHAPTER 5 DISCUSSION 57 5.1 Training effects of arm-swinging exercise on cardiovascular function. 57 5.2 Microcirculation to adapt blood flow change induced by arm-swinging movement. 58 5.3 Differences of brain activations before and after training of ASE and PSG. 59 5.4 Effects of training of ASE and PSG on balance ability. 60 5.5 Limitations 61 CHAPTER 6 CONCLUSION 62 CHAPTER 7 REFERENCE 63

    Agrawal, V., Gailey, R., Gaunaurd, I., Gailey, R., 3rd, & O'Toole, C. (2011). Weight distribution symmetry during the sit-to-stand movement of unilateral transtibial amputees. Ergonomics, 54(7), 656-664. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21770752. doi:10.1080/00140139.2011.586060
    Akdemir Akar, S., Kara, S., Latifoğlu, F., & Bilgiç, V. (2013). Spectral analysis of photoplethysmographic signals: The importance of preprocessing. Biomedical Signal Processing and Control, 8(1), 16-22. doi:10.1016/j.bspc.2012.04.002
    Amjad, I., Niazi, I. K., Toor, H. G., Nedergaard, R. B., Shafique, M., Holt, K., . . . Ahmed, T. (2020). Acute Effects of Aerobic Exercise on Somatosensory-Evoked Potentials in Patients with Mild Cognitive Impairment. Brain Sci, 10(10). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/32977661. doi:10.3390/brainsci10100663
    Annica Karlsson, G. F. (2000). Correlations between force plate measures for assessment of balance. Clinical Biomechanics.
    Axel Linke, S. E., Rainer Hambrecht. (2008). <Effects of exercise training upon endothelial function in patients with cardiovascular disease.pdf>. Frontiers in Bioscience, 13, 424-432.
    Azarpaikan, A., & Taheri Torbati, H. (2018). Effect of somatosensory and neurofeedback training on balance in older healthy adults: a preliminary investigation. Aging Clin Exp Res, 30(7), 745-753. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29063490. doi:10.1007/s40520-017-0835-3
    Benichou, O. A.-O., & Lord, S. R. Rationale for Strengthening Muscle to Prevent Falls and Fractures: A Review of the Evidence. (1432-0827 (Electronic)).
    Benja Songsaengrit, P. B., Veeradej Pisprasert, Ploypailin Aneknan, Yupaporn Kanpettha, Arisa Sespheng, Naruemon Leelayuwat. (2017). <Effects of Traditional and Modified Arm Swing.pdf>. Journal of Exercise Physiologyonline, 20.
    Burchell, A. E., Lobo, M. D., Sulke, N., Sobotka, P. A., & Paton, J. F. (2014). Arteriovenous anastomosis: is this the way to control hypertension? Hypertension, 64(1), 6-12. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24711522. doi:10.1161/HYPERTENSIONAHA.114.02925
    Cakar, H. I., Dogan, S., Kara, S., Rittweger, J., Rawer, R., & Zange, J. (2017). Vibration-related extrusion of capillary blood from the calf musculature depends upon directions of vibration of the leg and of the gravity vector. Eur J Appl Physiol, 117(6), 1107-1117. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28374114. doi:10.1007/s00421-017-3597-x
    Chatutain, A., Pattana, J., Parinsarum, T., & Lapanantasin, S. (2019). Walking meditation promotes ankle proprioception and balance performance among elderly women. J Bodyw Mov Ther, 23(3), 652-657. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31563384. doi:10.1016/j.jbmt.2018.09.152
    Chen, J. Y., Lin, C. C. K., Lin, C. W., Yu, F. M., Li, K. J., & Tsai, L. M. (2020). Development of Radial Artery Pulse Audiogram Sensing System for Fast Detection of Atrial Fibrillation and Pulse Amplitude Variation. IEEE Access, 8, 178770-178781. doi:10.1109/ACCESS.2020.3026833
    Chompoopan, W. (2018). Effect of Arm Swing Exercises on Cardiovascular Response and Balance of Older Women. International Journal of GEOMATE, 15(49). doi:10.21660/2018.49.3566
    Chorin, F., Cornu, C., Beaune, B., Frere, J., & Rahmani, A. (2016). Sit to stand in elderly fallers vs non-fallers: new insights from force platform and electromyography data. Aging Clin Exp Res, 28(5), 871-879. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26563286. doi:10.1007/s40520-015-0486-1
    Clifford, G. D., & College, S. C. (2002). Signal Processing Methods
    for
    Heart Rate Variability.
    Cochrane, D. J., Stannard, S. R., Sargeant, A. J., & Rittweger, J. (2008). The rate of muscle temperature increase during acute whole-body vibration exercise. Eur J Appl Physiol, 103(4), 441-448. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18392845. doi:10.1007/s00421-008-0736-4
    Cracowski, J. L., & Roustit, M. (2020). Human Skin Microcirculation. Compr Physiol, 10(3), 1105-1154. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/32941681. doi:10.1002/cphy.c190008
    da Silva, V. P., de Oliveira, N. A., Silveira, H., Mello, R. G., & Deslandes, A. C. (2015). Heart rate variability indexes as a marker of chronic adaptation in athletes: a systematic review. Ann Noninvasive Electrocardiol, 20(2), 108-118. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25424360. doi:10.1111/anec.12237
    Etnyre, B., & Thomas, D. Q. (2007). Event standardization of sit-to-stand movements. Phys Ther, 87(12), 1651-1666. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17940102. doi:10.2522/ptj.20060378
    Fu, Q., & Levine, B. D. (2013). Exercise and the autonomic nervous system. Handb Clin Neurol, 117, 147-160. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24095123. doi:10.1016/B978-0-444-53491-0.00013-4
    Galloza, J., Castillo, B., & Micheo, W. (2017). Benefits of Exercise in the Older Population. Phys Med Rehabil Clin N Am, 28(4), 659-669. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29031333. doi:10.1016/j.pmr.2017.06.001
    Gemignani, J., Middell E Fau - Barbour, R. L., Barbour Rl Fau - Graber, H. L., Graber Hl Fau - Blankertz, B., & Blankertz, B. Improving the analysis of near-infrared spectroscopy data with multivariate classification of hemodynamic patterns: a theoretical formulation and validation. (1741-2552 (Electronic)).
    Guo, Y., Shi, H., Yu, D., & Qiu, P. (2016). Health benefits of traditional Chinese sports and physical activity for older adults: A systematic review of evidence. J Sport Health Sci, 5(3), 270-280. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30356513. doi:10.1016/j.jshs.2016.07.002
    Haruki Toda, A. N., Zhiwei Luo. (2015). <Age and gender differences in the control of vertical ground reaction force by the hip, knee and ankle joints.pdf>. J. Phys. Ther. Sci., 27, 1833-1838.
    Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (0009-7322 (Print)).
    Hebe De´sire´e Kvernmo, A. S., Maja Bracic, Knut Arvid Kirkebøen, Knut Kvernebo. (1998). <Spectral Analysis of the Laser Doppler Perfusion Signal in Human Skin before and after Exercise.pdf>. Microvascular Research.
    Heishman, A. D., Daub, B. D., Miller, R. M., Freitas, E. D. S., Frantz, B. A., & Bemben, M. G. Countermovement Jump Reliability Performed With and Without an Arm Swing in NCAA Division 1 Intercollegiate Basketball Players. (1533-4287 (Electronic)).
    Hellmers, S., Fudickar, S., Lau, S., Elgert, L., Diekmann, R., Bauer, J. M., & Hein, A. (2019). Measurement of the Chair Rise Performance of Older People Based on Force Plates and IMUs. Sensors (Basel), 19(6). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30893819. doi:10.3390/s19061370
    Hellmers, S., Steen, E.-E., Elgert, L., Heinks, A., Bauer, J., Fudickar, S., & Hein, A. (2017). Towards a minimized unsupervised technical assessment of physical performance in domestic environments.
    Hertzman, A. B. (1938). THE BLOOD SUPPLY OF VARIOUS SKIN AREAS AS ESTIMATED BY THE PHOTOELECTRIC PLETHYSMOGRAPH. American Journal of Physiology, 124, 328-340.
    Hotta, H., & Uchida, S. Aging of the autonomic nervous system and possible improvements in autonomic activity using somatic afferent stimulation. (1447-0594 (Electronic)).
    Hotta, H., & Uchida, S. (2010). Aging of the autonomic nervous system and possible improvements in autonomic activity using somatic afferent stimulation. Geriatr Gerontol Int, 10 Suppl 1, S127-136. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20590828. doi:10.1111/j.1447-0594.2010.00592.x
    Hugh Hemmings, T. E. (2019). Myogenic Response. In Pharmacology and Physiology for Anesthesia (Second Edition).
    Ide, K., Pott F Fau - Van Lieshout, J. J., Van Lieshout Jj Fau - Secher, N. H., & Secher, N. H. Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass. (0001-6772 (Print)).
    Intlekofer, K., & Cotman, C. (2012). Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiology of disease, 57. doi:10.1016/j.nbd.2012.06.011
    Jang, S. H., Seo, J. P., Lee, S. H., Jin, S. H., & Yeo, S. S. (2017). The cortical activation pattern during bilateral arm raising movements. Neural Regen Res, 12(2), 317-320. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28400816. doi:10.4103/1673-5374.200817
    Jang, S. H., Yeo, S. S., Lee, S. H., Jin, S. H., & Lee, M. Y. (2017). Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study. Neural Regen Res, 12(8), 1294-1298. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28966644. doi:10.4103/1673-5374.213549
    Jatuporn Phoemsapthawee, W. A., Naruemon Leelayuwat. (2016). <The Benefit of Arm Swing Exercise on Cognitive.pdf>. Journal of Exercise Physiology Online, 19.
    Jensen, M. T. (2019). Resting heart rate and relation to disease and longevity: past, present and future. Scand J Clin Lab Invest, 79(1-2), 108-116. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30761923. doi:10.1080/00365513.2019.1566567
    Klabunde, R. E. (2017). Cardiac electrophysiology: normal and ischemic ionic currents and the ECG. Adv Physiol Educ, 41(1), 29-37. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28143820. doi:10.1152/advan.00105.2016
    Kleber G. Franchini, A. W. C., Jr. (2004). <Neurogenic Control of Blood Vessels.pdf>. In Primer on the Autonomic Nervous System (pp. 139-143).
    Lai, Y. H., Wang, A. Y., Yang, C. C., & Guo, L. Y. (2020). The Recovery Benefit on Skin Blood Flow Using Vibrating Foam Rollers for Postexercise Muscle Fatigue in Runners. Int J Environ Res Public Health, 17(23). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/33291311. doi:10.3390/ijerph17239118
    Lauche, R., Cramer, H., Hauser, W., Dobos, G., & Langhorst, J. (2013). A systematic review and meta-analysis of qigong for the fibromyalgia syndrome. Evid Based Complement Alternat Med, 2013, 635182. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24288564. doi:10.1155/2013/635182
    Lee, S. H., Jin, S. H., & An, J. (2019). The difference in cortical activation pattern for complex motor skills: A functional near- infrared spectroscopy study. Scientific Reports, 9(1), 14066. Retrieved from https://doi.org/10.1038/s41598-019-50644-9. doi:10.1038/s41598-019-50644-9
    Leelayuwat, N. (2013). Beneficial Effects of Alternative Exercise in Patients with Diabetes Type II. In Type 2 Diabetes.
    Li, K., Rudiger, H., & Ziemssen, T. (2019). Spectral Analysis of Heart Rate Variability: Time Window Matters. Front Neurol, 10, 545. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31191437. doi:10.3389/fneur.2019.00545
    Li, Z., Zhang, M., Xin, Q., Luo, S., Cui, R., Zhou, W., & Lu, L. (2013). Age-related changes in spontaneous oscillations assessed by wavelet transform of cerebral oxygenation and arterial blood pressure signals. J Cereb Blood Flow Metab, 33(5), 692-699. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23361392. doi:10.1038/jcbfm.2013.4
    Lin, P. Y., Lin Si Fau - Chen, J.-J. J., & Chen, J. J. Functional near infrared spectroscopy study of age-related difference in cortical activation patterns during cycling with speed feedback. (1558-0210 (Electronic)).
    Lin, T. Y., Wu, J. S., Lin, L. L., Ho, T. C., Lin, P. Y., & Chen, J. J. J. (2016). Assessments of Muscle Oxygenation and Cortical Activity Using Functional Near-infrared Spectroscopy in Healthy Adults During Hybrid Activation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(1), 1-9. doi:10.1109/TNSRE.2015.2429655
    Mackey, D. C., & Robinovitch, S. N. (2006). Mechanisms underlying age-related differences in ability to recover balance with the ankle strategy. Gait Posture, 23(1), 59-68. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16311196. doi:10.1016/j.gaitpost.2004.11.009
    Magder, S. (2018). The meaning of blood pressure. Crit Care, 22(1), 257. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30305136. doi:10.1186/s13054-018-2171-1
    Mei-Yun Liaw, M. C.-L. C., MD, PhD; Yu-Cheng Pei, MD; Chau-Peng Leong, MD; Yiu-Chung Lau, MD. (2009). <Comparison of the Static and Dynamic Balance Performance in.pdf>. Chang Gung Med J, 32.
    Melo, T. A. d., Duarte, A. C. M., Bezerra, T. S., França, F., Soares, N. S., & Brito, D. (2019). The Five Times Sit-to-Stand Test: safety and reliability with older intensive care unit patients at discharge. [Teste de Sentar-Levantar Cinco Vezes: segurança e confiabilidade em pacientes idosos na alta da unidade de terapia intensiva]. Revista Brasileira de terapia intensiva, 31(1), 27-33. Retrieved from https://pubmed.ncbi.nlm.nih.gov/30892478
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443310/. doi:10.5935/0103-507X.20190006
    Mizeva, I., Di Maria, C., Frick, P., Podtaev, S., & Allen, J. (2015). Quantifying the correlation between photoplethysmography and laser Doppler flowmetry microvascular low-frequency oscillations. J Biomed Opt, 20(3), 037007. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25764202. doi:10.1117/1.JBO.20.3.037007
    Mizeva, I., Frick, P., & Podtaev, S. (2016). Relationship of oscillating and average components of laser Doppler flowmetry signal. J Biomed Opt, 21(8), 85002. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27548769. doi:10.1117/1.JBO.21.8.085002
    Paquette, M., Li, Y., Hoekstra, J., & Bravo, J. (2014). An 8-week reactive balance training program in older healthy adults: A preliminary investigation. Journal of Sport and Health Science, 51. doi:10.1016/j.jshs.2014.06.004
    Perry, M. C., Carville, S. F., Smith, I. C. H., Rutherford, O. M., & Newham, D. J. (2007). Strength, power output and symmetry of leg muscles: effect of age and history of falling. European Journal of Applied Physiology, 100(5), 553-561. Retrieved from https://doi.org/10.1007/s00421-006-0247-0. doi:10.1007/s00421-006-0247-0
    Piyapong Prasertsri, O. B., Jatuporn Phoemsapthawee, Naruemon Leelayuwat. (2017a). <Arm swing exercise improves exercise capacity and oxygen consumption in overweight and normal weight sedentary young adults.pdf>. Journal of Exercise Physiology Online, 20.
    Piyapong Prasertsri, O. B., Jatuporn Phoemsapthawee, Naruemon Leelayuwat. (2017b). <Arm swing exercise improves exercise capacity and oxygen consumption in overweight and normal weight sedentary young adults.pdf>. Journal of Exercise Physiology Online, 20.
    Piyapong Prasertsri, O. B., Jatuporn Phoemsapthawee, Naruemon Leelayuwat. (2017c). <Comparative Effects of Arm Swing and Leg Cycling.pdf>. Journal of Exercise Physiologyonline, 20.
    Prasertsri, P., Singsanan, S., Chonanant, C., Boonla, O., & Trongtosak, P. (2019). Effects of arm swing exercise training on cardiac autonomic modulation, cardiovascular risk factors, and electrolytes in persons aged 60-80 years with prehypertension: A randomized controlled trial. J Exerc Sci Fit, 17(2), 47-54. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30740133. doi:10.1016/j.jesf.2018.11.002
    Punt, M., Bruijn, S. M., Wittink, H., & van Dieen, J. H. (2015). Effect of arm swing strategy on local dynamic stability of human gait. Gait Posture, 41(2), 504-509. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25582804. doi:10.1016/j.gaitpost.2014.12.002
    Radak, Z., Hart N Fau - Sarga, L., Sarga L Fau - Koltai, E., Koltai E Fau - Atalay, M., Atalay M Fau - Ohno, H., Ohno H Fau - Boldogh, I., & Boldogh, I. Exercise plays a preventive role against Alzheimer's disease. (1875-8908 (Electronic)).
    Reglin, B., & Pries, A. R. (2014). Metabolic control of microvascular networks: oxygen sensing and beyond. J Vasc Res, 51(5), 376-392. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25531863. doi:10.1159/000369460
    Rhyu, I. J., Bytheway Ja Fau - Kohler, S. J., Kohler Sj Fau - Lange, H., Lange H Fau - Lee, K. J., Lee Kj Fau - Boklewski, J., Boklewski J Fau - McCormick, K., . . . Cameron, J. L. Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. (1873-7544 (Electronic)).
    Rodrigues, L. M., Rocha, C., Ferreira, H., & Silva, H. (2019). Different lasers reveal different skin microcirculatory flowmotion - data from the wavelet transform analysis of human hindlimb perfusion. Sci Rep, 9(1), 16951. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31740748. doi:10.1038/s41598-019-53213-2
    Rooks, C. R., Thom, N. J., McCully, K. K., & Dishman, R. K. (2010). Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Prog Neurobiol, 92(2), 134-150. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20542078. doi:10.1016/j.pneurobio.2010.06.002
    Ross, M. D., Malone, E., & Florida-James, G. (2016). Vascular Ageing and Exercise: Focus on Cellular Reparative Processes. Oxid Med Cell Longev, 2016, 3583956. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26697131. doi:10.1155/2016/3583956
    Rossi, M., Bradbury, A., Magagna, A., Pesce, M., Taddei, S., & Stefanovska, A. (2011). Investigation of skin vasoreactivity and blood flow oscillations in hypertensive patients: effect of short-term antihypertensive treatment. J Hypertens, 29(8), 1569-1576. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21720275. doi:10.1097/HJH.0b013e328348b653
    Seekaow Churproong MD, B. K. P., Paraj Ratanajaipan MEng, Poollarp Tattathongkom BS. (2015). <The Effect of the Arm Swing on the Heart Rate.pdf>. The Journal of the Medical Association of Thailand, 98.
    Shaw, J. M., & Snow, C. M. (1998). Weighted Vest Exercise Improves Indices of Fall Risk in Older Women. The Journals of Gerontology: Series A, 53A(1), M53-M58. Retrieved from https://doi.org/10.1093/gerona/53A.1.M53. doi:10.1093/gerona/53A.1.M53
    Singh, J. N., Nguyen, T., Kerndt, C. C., & Dhamoon, A. S. Physiology, Blood Pressure Age Related Changes. BTI - StatPearls.
    Soekadar, S., Kohl, S., Mihara, M., & von Lühmann, A. (2021). Optical brain imaging and its application to neurofeedback. NeuroImage: Clinical, 30, 102577. doi:10.1016/j.nicl.2021.102577
    Stefanovska, A. Coupled oscillators. Complex but not complicated cardiovascular and brain interactions. (0739-5175 (Print)). doi:D - NLM: UKMS31807 EDAT- 2008/01/15 09:00 MHDA- 2008/02/07 09:00 CRDT- 2008/01/15 09:00 PHST- 2008/01/15 09:00 [pubmed] PHST- 2008/02/07 09:00 [medline] PHST- 2008/01/15 09:00 [entrez] AID - 10.1109/emb.2007.907088 [doi] PST - ppublish
    Streltsova, L. I., Plokhova, E. V., Kruglikova, A. S., Pykhtina, V. S., Akasheva, D. U., Tkacheva, O. N., & Boitsov, S. A. [The age-related changes of the heart rate variability measurements: the role of the inflammation, oxidative stress and telomeres biology]. (1561-9125 (Print)).
    Svoboda, K., & Li, N. (2018). Neural mechanisms of movement planning: motor cortex and beyond. Curr Opin Neurobiol, 49, 33-41. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29172091. doi:10.1016/j.conb.2017.10.023
    Taishi TSUJI, J. Y., Kenji TSUNODA, Akihiro KANAMORI, Tomohiro OKURA. (2016). Ground Reaction Force in Sit-to-Stand Movement reflects Lower Limb Function in Middle-Aged and Older Women with Knee Pain. Human Performance Measurement, 13.
    Tamura, T., Maeda, Y., Sekine, M., & Yoshida, M. (2014). Wearable Photoplethysmographic Sensors—Past and Present. Electronics, 3(2), 282-302. Retrieved from https://www.mdpi.com/2079-9292/3/2/282.
    Thompson, L. A., Badache, M., Cale, S., Behera, L., & Zhang, N. (2017). Balance Performance as Observed by Center-of-Pressure Parameter Characteristics in Male Soccer Athletes and Non-Athletes. Sports (Basel), 5(4). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29910446. doi:10.3390/sports5040086
    TOMPKINS, J. P. A. W. J. (1985). A Real-Time QRS Detection Algorithm. IEEE E TRANSACTIONS ON BIOMEDICAL ENGINEERING,, BME-32.
    Tsuji, T., Tsunoda, K., Mitsuishi, Y., & Okura, T. (2015). Ground Reaction Force in Sit-to-stand Movement Reflects Lower Limb Muscle Strength and Power in Community-dwelling Older Adults. International Journal of Gerontology, 9(2), 111-118. doi:10.1016/j.ijge.2015.05.009
    Valenza, G., Citi, L., Saul, J. P., & Barbieri, R. (2018). Measures of sympathetic and parasympathetic autonomic outflow from heartbeat dynamics. J Appl Physiol (1985), 125(1), 19-39. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29446712. doi:10.1152/japplphysiol.00842.2017
    VANDEPUT, S. (2010). HEART RATE VARIABILITY : LINEAR AND
    NONLINEAR ANALYSIS WITH APPLICATIONS
    IN HUMAN PHYSIOLOG<HEART_RATE_VARIABILITY_LINEAR_AND_NONLINEAR_ANALYS.pdf>.
    Walloe, L. (2016). Arterio-venous anastomoses in the human skin and their role in temperature control. Temperature (Austin), 3(1), 92-103. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27227081. doi:10.1080/23328940.2015.1088502
    Walsh, R. R., Small, S. L., Chen, E. E., & Solodkin, A. (2008). Network activation during bimanual movements in humans. NeuroImage, 43(3), 540-553. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18718872. doi:10.1016/j.neuroimage.2008.07.019
    Wilson, T. W., Kurz, M. J., & Arpin, D. J. (2014). Functional specialization within the supplementary motor area: a fNIRS study of bimanual coordination. NeuroImage, 85 Pt 1, 445-450. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23664948. doi:10.1016/j.neuroimage.2013.04.112
    Wright, C. I., Scholten, H. J., Schilder, J. C., Elsen, B. M., Hanselaar, W., Kroner, C. I., . . . de Groot, E. (2008). Arterial stiffness, endothelial function and microcirculatory reactivity in healthy young males. Clin Physiol Funct Imaging, 28(5), 299-306. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18445071. doi:10.1111/j.1475-097X.2008.00807.x
    Wu, G., van der Helm, F. C., Veeger, H. E., Makhsous, M., Van Roy, P., Anglin, C., . . . International Society of, B. (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. J Biomech, 38(5), 981-992. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15844264. doi:10.1016/j.jbiomech.2004.05.042
    Wu, Y., Li, Y., Liu, A. M., Xiao, F., Wang, Y. Z., Hu, F., . . . Gu, D. Y. (2016). Effect of active arm swing to local dynamic stability during walking. Hum Mov Sci, 45, 102-109. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26615477. doi:10.1016/j.humov.2015.10.005
    Yamako, G., Chosa, E., Totoribe, K., Fukao, Y., & Deng, G. (2017). Quantification of the sit-to-stand movement for monitoring age-related motor deterioration using the Nintendo Wii Balance Board. PLoS One, 12(11), e0188165. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29136031. doi:10.1371/journal.pone.0188165
    Young, H. A., & Benton, D. (2018). Heart-rate variability: a biomarker to study the influence of nutrition on physiological and psychological health? Behav Pharmacol, 29(2 and 3-Spec Issue), 140-151. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29543648. doi:10.1097/FBP.0000000000000383
    Yu, S., & McEniery, C. M. (2020). Central Versus Peripheral Artery Stiffening and Cardiovascular Risk. Arterioscler Thromb Vasc Biol, 40(5), 1028-1033. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/32188277. doi:10.1161/ATVBAHA.120.313128
    Yuan, P., & Raz, N. (2014). Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neuroscience and biobehavioral reviews, 42, 180-192. Retrieved from https://pubmed.ncbi.nlm.nih.gov/24568942
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011981/. doi:10.1016/j.neubiorev.2014.02.005
    Zeng, Y., Luo, T., Xie, H., Huang, M., & Cheng, A. S. (2014). Health benefits of qigong or tai chi for cancer patients: a systematic review and meta-analyses. Complement Ther Med, 22(1), 173-186. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24559833. doi:10.1016/j.ctim.2013.11.010
    Zhang, D. Y., & Anderson, A. S. (2014). The sympathetic nervous system and heart failure. Cardiology clinics, 32(1), 33-vii. Retrieved from https://pubmed.ncbi.nlm.nih.gov/24286577
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5873965/. doi:10.1016/j.ccl.2013.09.010
    Zimeo Morais, G. A., Balardin, J. B., & Sato, J. R. (2018). fNIRS Optodes' Location Decider (fOLD): a toolbox for probe arrangement guided by brain regions-of-interest. Sci Rep, 8(1), 3341. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29463928. doi:10.1038/s41598-018-21716-z
    朱大卿. (2019). 八週平甩功訓練對有睡眠品質障礙之中高齡社區女性功能性體適能及睡眠品質之影響.
    黃錫美. (2008). 平甩功對更年期婦女心肺耐力, 困擾症狀及睡眠品質之成效探討.
    鄭建民, 鍾宜榛, & 黃新作. (2015). 十分鐘平甩功前, 後 30 分鐘之氣場能量監測分析: 高齡女性個案研究. 高應科大體育學刊(14).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE