簡易檢索 / 詳目顯示

研究生: 蔡志明
Tsai, Chih-Ming
論文名稱: 藉由新式的硝酸處理來縮短AlGaN/GaN HEMTs閘極長度
Novel Shrinking Gate Length by HNO3 Treatment in AlGaN/GaN HEMTs
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 85
中文關鍵詞: 氮化鎵高速元件閘極長度硝酸鎳/金
外文關鍵詞: Ni/Au, HNO3, gate length, AlGaN/GaN HEMT
相關次數: 點閱:80下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一個可以有效縮短GaN-based HEMTs閘極長度的方法。在閘極的製程上,首先使用低階的多重波長汞燈曝光儀器製作出微米等級的閘極長度,再配合本文所提出的新式硝酸(HNO3)微縮閘極製程,藉此來獲得次微米閘極長度。而此硝酸微縮閘極製程所利用的原理是:GaN具有不易被酸鹼蝕刻的極佳化學穩定性、Ni/Au閘極金屬層的選擇性蝕刻。當元件的Ni/Au閘極金屬完成後,再將元件浸泡在硝酸數秒鐘,於是微米等級的閘極長度將被微縮成次微米等級。
    本文成功的完成了一個低成本、簡單、快速且高效能的次微米閘極製程。次微米閘極有效的改善了元件的直流與微波特性:飽和電流密度IDSS0 (395.8mA/mm to 471.5mA/mm)、最大轉導值gm,max (121.5mS/mm to 189.8mS/mm)、夾止電壓Vpinch-off (–3.95V to –3.2V)、電流增益截止頻率fT (12.351GHz to 21.876GHz)、最大震盪頻率fmax (16.925GHz to 27.342GHz)、最小雜訊NFmin (1.7827dB to 0.7681dB),並且維持了優異的高功率特性。透過新式的硝酸微縮閘極製程,使得GaN-based HEMTs在未來微波領域的應用扮演更重要的角色。

    This thesis reports an effective method of shrinking gate length in GaN-based HEMTs. In the gate process, we first use low-end multi-wavelength Hg lamp to fabricate micro scale gate length and then utilize our novel nitric acid (HNO3) treatment to shrink gate length, so as to obtain sub-micro gate length. We employ the principle that GaN possesses excellent chemical stability so HNO3 will not etch GaN-based HEMTs. Besides, Ni metal is easily etched by HNO3 treatment. Contrary to Ni metal, Au metal is hardly etched by HNO3 treatment. Therefore, our devices were dipped into HNO3 for several seconds after Ni/Au gate schottky contact process. Thus the gate length will be shrunk from micro scale to sub-micro scale.
    In this thesis, we have successfully accomplished a sub-micron gate process of low cost, simple, fast, and high efficiency. Sub-micron gate improved our devices' DC and microwave characteristics effectively: the saturation drain current density IDSS0 (395.8mA/mm to 471.5mA/mm), the maximum extrinsic transconductance gm,max (121.5mS/mm to 189.8mS/mm), the pinch-off voltage Vpinch-off (–3.95V to –3.2V), the unity current gain cut-off frequency fT (12.351GHz to 21.876GHz), the maximum oscillation frequency fmax (16.925GHz to 27.342GHz), and the minimum noise figure NFmin (1.7827dB to 0.7681dB). Besides, the excellent power characteristics were still maintained. Consequently, GaN-based HEMTs will play a very important role for microwave applications in the future through this novel HNO3 process of shrinking gate length.

    Contents Abstract (Chinese) i. Abstract (English) iii. Table Captions viii. Figure Captions ix. Chapter 1 Introduction 01. 1-1 Background and Motivation of Research. 01. 1-2 Organization of This Thesis. 03. Chapter 2 Properties of AlGaN/GaN Heterostructures 04. 2-1 Group III-Nitrides. 04. 2-2 AlGaN/GaN Heterostructures. 07. 2-3 Electron Transport in AlGaN/GaN Heterostructures. 10. 2-4 Development of AlGaN/GaN HEMTs. 11. Chapter 3 Device Structure and Fabrication 13. 3-1 Device Structure. 13. 3-2 Fabrication Processes. 13. 3-2-1 Mesa Isolation. 14. 3-2-2 Source and Drain Ohmic Contact. 14. 3-2-3 Gate Schottky Contact. 15. 3-2-4 HNO3 Treatment. 15. Chapter 4 Experimental Results and Discussion 17. 4-1 SEM Images of Gate. 17. 4-2 DC Characteristics. 17. 4-2-1 Output Characteristics. 18. 4-2-2 Transfer Characteristics. 18. 4-2-3 Gate-Drain Breakdown Characteristics. 19. 4-2-4 HNO3 Treatment Time vs. HNO3 Concentration. 21. 4-3 Temperature-Dependent DC Characteristics. 22. 4-3-1 Temperature-Dependent Output Characteristics. 22. 4-3-2 Temperature-Dependent Transfer Characteristics. 23. 4-3-3 Temperature-Dependent Gate-Drain Breakdown Characteristics. 24. 4-4 fT and fmax Characteristics. 25. 4-5 Power Characteristics. 28. 4-6 Noise Characteristics. 32. Chapter 5 Conclusion 37. References 38. Figures 44.

    References
    [1] Martin Kočan, “AlGaN/GaN MBE 2DEG Heterostructures: Interplay between Surface-, Interface- and Device-Properties,” Ph.D. thesis, University of Aachen RWTH, 2003.
    [2] M. Kameche, and N.V. Drozdovski, “GaAs-, InP- and GaN HEMT-based Microwave Control Devices: What is Best and Why,” Microwave J., vol. 48, no. 5, pp. 164-180, May 2005.
    [3] H. R. Chen, M. K. Hsu, S. Y. Chiu, W. T. Chen, G. H. Chen, Y. C. Chang, and W. S. Lour, “InGaP/InGaAs Pseudomorphic Heterodoped-Channel FETs With a Field Plate and a Reduced Gate Length by Splitting Gate Metal,” IEEE Electron Device Lett., vol. 27, no. 12, pp. 948-950, 2006.
    [4] G. M. Metze, J. F. Bass, T. T. Lee, D. Porter, H. E. Carlson, and P. E. Laux, “A Dielectric-Defined Process for the Formation of T-Gate Field-Effect Transistors,” IEEE Microwave and Guided Wave Lett., vol. 1, pp. 198-200, Aug. 1991.
    [5] K. S. Lee, Y. S. Kim, K. T. Lee, and Y. H. Jeong, “Process for 20 nm T gate on Al0.25Ga0.75As/ In0.2Ga0.8As/GaAs epilayer using two-step lithography and zigzag foot,” J. Vac. Sci. Technol. B, Microelectron Process Phenom., vol. 24, no. 4, pp. 1869-1872, July 2006.
    [6] K. Tabatabaie-Alavi, D. M. Shaw, and P. J. Duval, “Evolution of T-Shaped Gate Lithography for Compound Semiconductors Field-Effect Transistors,” IEEE Trans. Semiconductor Manufacturing, vol. 16, no. 3, pp. 365-369, Aug. 2003.
    [7] N. Hara, K. Makiyama, T. Takahashi, K. Sawada, T. Arai, T. Ohki, et al., “Highly Uniform InAlAs–InGaAs HEMT Technology for High-Speed Optical Communication System ICs,” IEEE Trans. Semiconductor Manufacturing, vol. 16, no. 3, pp. 370-375, Aug. 2003.
    [8] O. Breitschdel, H. Grbeldinger, B. Kuhn, F. Scholz, W. Walthes, M. Berroth, et al., “Short-channel AlGaN/GaN HEMTs with 70nm T-gate,” Electronics Lett., vol. 35, no. 23, pp. 2018-2019, Nov. 1999.
    [9] Hong Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice Hall, 2001.
    [10] P. Javorka, “Fabrication and Characterization of AlGaN/GaN High Electron Mobility Transistors,” Ph.D. thesis, University of Aachen RWTH, 2004.
    [11] S. C. Jain, M. Willander, J. Narayan, and R.Van Overstraeten, “III-Nitrides: Growth, characterization, and properties,” J. Appl. Phys., vol. 87, no. 3, pp. 965-1006, 2000.
    [12] T. B. Wang, “Improved Nitride-based Optical and Electrical Devices,” Ph.D. thesis, National Cheng-Kung University, 2007.
    [13] H. P. Maruska, and J. J. Tietjen, “The Preparation and Properties of Vapor-Deposited Single-Crystal-Line GaN,” Appl. Phys. Lett., vol. 15, no. 10, pp. 327-329, 1969.
    [14] R. Jothilingam, M. W. Koch, J. B. Posthill, and G. W. Wicks, “A Study of Cracking in GaN grown on Si by MBE,” J. Electronic Mater., vol. 30, pp. 821-824, 2001.
    [15] M. H. Kim, Y. G. Do, H. C. Kang, et al., “Effects of step-graded AlGaN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett., vol. 79, pp. 2713-2715, 2001.
    [16] H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth, pp. 189-190, 1998.
    [17] B. Gil, “Low-Dimensional Nitride Semiconductors,” Oxford University Press, 2000.
    [18] F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Device, vol. 48, no. 3, pp. 450-457, Mar. 2001.
    [19] R. Grundbacher, D. Ballegeer, A. A. Ketterson, Y. C. Kao, and I. Adesida, “Utilization of an Electron Beam Resist Process to Examine the Effects of Asymmetric Gate Recess on the DeviceCharacteristics of AlGaAs/InGaAs PHEMT’s,” IEEE Trans. Electron Device, vol. 44, pp. 2136-2142, Dec. 1997.
    [20] J. M. Lopez, T. Gonzlez, D. Pardo, S. Bollaert, T. Parenty, and A. Cappy, “Design Optimization of AlInAs–GaInAs HEMTs for High-Frequency Applications,” IEEE Trans. Electron Device, vol. 51, pp. 521-528, Apr. 2004.
    [21] D. Geiger, J. Dickmann, C. Wolk, and E. Kohn, “Recess dependent breakdown behavior of GaAs-HFETs,” IEEE Electron Device Lett., vol. 16, pp. 30-32, 1995.
    [22] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-High Power Density AlGaN/GaN HEMTs,” IEEE Trans. Electron Device, vol. 48, pp. 586-590, Mar. 2001.
    [23] M. Farahmand, C. Garetto, E. Bellotti, K. F. Brennan, M. Goano, E. Ghillino, et al., “Monte Carlo Simulation of Electron Transport in the III-Nitride Wurtzite Phase Materials System: Binaries and Ternaries,” IEEE Trans. Electron Device, vol. 48, no. 3, pp. 535-542, Mar. 2001.
    [24] A. Khan, M. J. N. Kuzina, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, “Microwave performance of a 0.25μm gate AlGaN/GaN heterostructure field effect transistor,” Appl. Phys. Lett., vol. 65, pp. 1121-1123, 1994.
    [25] . Aktas, W. Kim, Z. Fan, S. N. Mohammad, A. Botchkarev, A. Salvador, et al., “High transconductance-normally-off GaN MOD-FETs,” IEEE Electron Device Lett., vol. 31, no. 16, pp. 1389-1390, 1995.
    [26] F. Y. Wu, P. B. Keller, D. Kapolnek, P. S. Denbaars, and U. K. Mishra, “Measured microwave power performance of AlGaN/GaN MODFET,” IEEE Electron Device Lett., vol. 17, pp. 455-457, 1995.
    [27] F. Y. Wu, P. B. Keller, P. Parikh, D. Kapolnek, S. P. Denbaars, and U. K. Mishra, “Bias dependent microwave performance of AlGaN/GaN MODFET’s up to 100V,” IEEE Electron Device Lett., vol. 18, pp. 290-292, 1997.
    [28] U. K. Mishra, Y. F. Wu, B. P. Keller, S. Keller, and S. P. Denbaars, “GaN microwave electronics,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 756-761, 1998.
    [29] M. Micovic, N. X. Nguyen, P. Janke, W. S. Wong, P. Hashimoto, L. M. McCray, and C. Nguyen, “GaN/AlGaN high electron mobility transistors with fT of 110GHz,” Electronics Lett., vol. 36, no. 4, pp. 358-359, 2000.
    [30] V. Kumar, W. Lu, F. A. Khan, R. Schwindt, A. Kuliev, G. Simin, J. Yang, et al., “High performance 0.25μm gate-length AlGaN/GaN HEMTs on sapphire with transconductance of over 400 mS/mm,” Electronics Lett., vol. 38, pp. 252-253, 2002.
    [31] T. S. Sheppard, K. Doverspike, L. W. Pribble, T. S. Allen, W. J. Palmour, T. l. Kehias, et al., “High power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett., vol. 20, pp. 161-163, 1999.
    [32] G. J. Sullivan, M. Y. Chen, J. A. Yang, Q. Chen, R. L. Pierson, et al., “High-power 10-GHz operation of AlGaN HFETs on insulating SiC,” IEEE Electron Device Lett., vol. 19, pp. 198-199, 1998.
    [33] L. Wu, J. Yang, M. A. Khan, and I. Adesida, “AlGaN/GaN HEMTs on SiC with over 100GHz fT and Low Microwave Noise,” IEEE Trans. Electron Device, vol. 48, no. 3, pp. 581-585, Mar. 2001.
    [34] Y. Cordier, F. Semond, J. Massies, B. Dessertene, S. Cassette, M. Surrugue, D. Adam, and S. L. Delage, “AlGaN/GaN HEMTs on resistive Si(111) substrate grown by gas-source MBE,” Electronics Lett., vol. 38, no. 2, pp. 91-92, 2002.
    [35] V. Hol, N. Vellas, C. Gaquire, J. C. De Jaeger, et al., “High-power AlGaN/GaN HEMTs on resistive silicon substrate,” Electronics Lett., vol. 38, pp. 750-752, 2002.
    [36] J. Chen, D. G. Ivey, J. Bardwell, Y. Liu, H. Tang, and J. B. Webb, “Microstructural analysis of Ti/Al/Ti/Au ohmic contact to n-AlGaN/GaN,” J. Vac. Sci. Technol., vol. 20, no. 3, pp. 1004-1010, 2002.
    [37] D. F. Wang, F. Shiwei, C. Lu, A. Motayed, M. Jah, S. N. Mohammad, K. A. Jones, and L. S. Riba, “Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN,” J. Appl. Phys., vol. 89, no. 11, pp. 6214-6217, June 2001.
    [38] N. A. Papanicolaou, M. V. Rao, J. Mittereder, and W. T. Anderson, “Reliable Ti/Al and Ti/Al/Ni/Au ohmic contacts to n-type GaN formed by vacuum annealing,” J. Vac. Sci. Technol., vol. 19, no. 1, pp. 261-267, 2001.
    [39] J. Kuzmik, P. Javorka, A. Alam, M. Marso, M. Heuken, et al., “Investigation of self-heating effects in AlGaN-GaN HEMTs,” Proc. EDMO, pp. 21-26, 2001.
    [40] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s,” IEEE Electron Device Lett., vol. 19, no. 3, pp. 89-91, 1998.
    [41] J. C. Huang, W. C. Hsu, C. S. Lee, D. H. Huang, and Y. C. Yang, “High-Power Density and High-Gain δ-Doped In0.425Al0.575As/In0.425Ga0.575As Low-Voltage for Operation,” J. of the Electronchemical Soc., vol. 154, pp. 185-190, 2007.
    [42] A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang, and I. Adesjda, “Dependence of DC and RF characteristics on gate length for high current AlGaN/GaN HFETs,” Electronics Lett., vol. 33, no. 12, pp. 1081-1083, 1997.
    [43] S. J. Kim, J. Y. Shim, J. H. Lee, H. S. Yoon, and K. H. Lee, “DC and RF Performance Characterization of a 0.2-μm T-Gate GaN/AlGaN Heterostructure Field-Effect Transistors with n+-AlGaN Cap Layers,” J. of the Korean Phys. Soc., vol. 42, no. 2, pp. 276-280, 2003.
    [44] K. Kunihiro, K. Kasahara, Y. Takahashi, and Y. Ohno, ”Microwave Performance of 0.3-µm Gate-Length Multi-Finger AlGaN/GaN Heterojunction FETs with Minimized Current Collapse,” Jpn. J. Appl. Phys., vol. 39, no. 4, pp. 2431-2434, 2000.
    [45] R. Soares, “GaAs MESFET Circuit Design,” Artech House, Boston and London, pp. 287-290, 1988.
    [46] S. Nuttinck, E. Gebara, J. Laskar, B. Wagner, and M. Harris, “RF Performance And Thermal Analysis of AlGaN/GaN Power HEMTs in Presence of Self-Heating Effects,” IEEE MTT-S. Digest, vol. 2, pp. 921-924, 2002.
    [47] S. Nuttinck, E. Gebara, J. Laskar, and H. M. Harris, “Study of Self-Heating Effects, Temperature-Dependent Modeling, and Pulsed Load–Pull Measurements on GaN HEMTs,” IEEE Trans. Microwave Theory and Tech., vol. 49, no. 12, pp. 2413-2420, Dec. 2001.
    [48] W. Lu, V. Kumar, E. L. Piner, and I. Adesida, “DC, RF, and Microwave Noise Performance of AlGaN-GaN Field Effect Transistors Dependence of Aluminum Concentration,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 1069-1074, Apr. 2003.
    [49] Z. H. Liu, S. Arulkumaran, G. I. Ng, W. C. Cheong, R. Zeng, J. Bu, H. Wang, K. Radhakrishnan, and C. H. Tan, “Microwave Noise Characteristics of AlGaN/GaN HEMTs on High-Resistivity Silicon Substrate,” IEEE International Workshop on Radio-Frequency Integration Technology, pp. 127-130, Singapore, 2005.
    [50] A. Minko, V. Hol, S. Lepilliet, G. Dambrine, J. C. De Jaeger, Y. Cordier, F. Semond, F. Natali, and J. Massies, “High Microwave and Noise Performance of 0.17-μm AlGaN-GaN HEMTs on High-Resistivity Silicon Substrates,” IEEE Electron Device Lett., vol. 25, no. 4, pp. 167-169, Apr. 2004.

    下載圖示 校內:2013-06-30公開
    校外:2013-06-30公開
    QR CODE