| 研究生: |
楊立榮 Yang, Li-Jung |
|---|---|
| 論文名稱: |
雙離子共聚高分子修飾之金奈米柱陣列表面增顯拉曼基板檢測水溶液中N-亞硝基二甲胺 Au Nanorod Arrays SERS Substrates Modified with Zwitterionic Copolymers for the Detection of N-Nitrosodimethylamine in Aqueous Solution |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 雙離子共聚高分子 、金奈米柱陣列基板 、微小毒性分子 、N-亞硝基二甲胺(NDMA) 、表面增強拉曼散射 |
| 外文關鍵詞: | Zwitterionic copolymers, Au nanorod array, small toxic-molecule, Surface-enhanced Raman scattering (SERS), N-Nitrosodimethylamine |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近數年,水體系統中受到N-亞硝基二甲胺(NDMA)的汙染情形日益嚴重,常見的檢測手法包括質譜儀和層析法,用於分析食物和水中的毒物檢測,而該方法的樣品製備複雜且耗時,重複檢測甚昂貴。因此,本研究以拉曼光譜對水溶液中NDMA進行檢測,利用雙離子共聚高分子修飾於金奈米柱陣列基板,以其高親水特性引導水溶液中NDMA進入奈米結構中的拉曼熱點區域,放大NDMA的拉曼訊號以便低濃度分析,不僅具有快速篩檢、樣品製備簡易,且達到10-8 M (=7.4 g/L)相當低的偵測極限。
本研究分為兩大部分,第一部分中合成聚(甲基丙烯酸縮水甘油酯-甲基丙烯酸硫代甜菜鹼)雙離子共聚高分子以及金奈米柱陣列基板之製備,利用GPC和NMR比對文獻後確認雙離子共聚高分子之結構合成成功。金奈米柱陣列製成四角、五角和六角柱體,以螢光待測分子R6G作為偵測表現的比較,當中六角柱為三者中,具有最強的拉曼增顯效果,因其結構緻密且避雷針效應使表面電漿共振有極大的增顯效應,並對R6G能達到10-12 M之偵測極限。
接著,將雙離子共聚高分子接枝於金奈米柱陣列基板上。由拉曼光譜圖及XPS分析中,證實高分子於基板上的鍵結成功。以接觸角測試說明雙離子共聚高分子修飾後,基板表面之親水性更佳,當中選擇接枝濃度為10 mg/mL所形成的分子間結合模式作為最適化條件;以SEM及AFM的結果說明雙離子修飾於基板表面且使得表面更加平滑保護表面拉曼散射熱區,並以FIB切開基板進行橫切面HR-TEM分析,其中影像圖及EDS全區域掃描結果說明雙離子共聚高分子甚至滲入接枝在金奈米柱間隙中。
第二部份以雙離子共聚高分子修飾之金奈米柱陣列基板應用於NDMA的水溶液偵測,並以未修飾之基板作為比較。結果說明雙離子共聚高分子之功能不僅能夠能提高基板的親水性與水合程度,在進行水溶液偵測時擷取微小毒性分子引導進入拉曼熱區,且金奈米結構引發表面電漿共振,侷域性電磁場增強所放大PL背景訊號籠罩拉曼圖譜,而在雙離子修飾後PL訊號則有所削弱,推測是雙離子結構中的正負電基團所形成的偶極-偶極作用力,改變金奈米柱間間隙的介電環境。最後,將雙離子修飾金奈米柱基板應用於NDMA的水溶液檢測,不僅成功定義681、984及1051 cm-1處為NDMA特徵峰,能達到10-8 M的偵測極限且同時為均勻性優異的基板。
本研究使用雙離子共聚高分子修飾於金奈米結構能成功地引導待測分子進入拉曼增顯熱區中,克服拉曼訊號微小的毒性分子偵測上的困難,且雙離子修飾層具有抗沾黏之特性,盼能於未來在SERS領域中,進行複雜生物介質中微小毒性分子之檢測能有極大的突破。
Recently, N-nitrosodimethylamine (NDMA), a probable human carcinogen, has been regarded as a water contaminant in surface and drinking water in North America and Canada. Analytical methods for measuring NDMA in water are expensive and labor intensive, such as GC/MS and HPLC/MS. Optical-based analytical methods, which are rapid and highly sensitive, are mainly utilized in chemical applications. Surface-enhanced Raman spectroscopy (SERS) can be used to investigate chemi-species via Raman-active modes. In this research, zwitterionic copolymer modified Au nanorod-array substrate was demonstrated to detect NDMA in aqeuous solution. Due to its super-hydrophilic behavior of zwitterionic copolymers, water molecule bonded small toxic-molecule can easily adsorb. Therefore, we utilized a zwitterionic copolymer, poly(glycidyl methacrylate-co- sulfobetaine methacrylate), Poly (GMA-co-SBMA), grafted-onto the Au nanorod-array substrates. The surface morphology analysis by AFM and contact angle meter showed more hydrophilic after the zwitterionic copolymer modification. The results of XPS and Raman spectra also proved the zwitterionic copolymer indeed grafted onto the structure. Through the scross-section images of the zwitterionic-modified substrate presented by TEM/EDS indicated the existence of the zwitterionic copolymer in the gap between rods. For the Raman dectection of NDMA in aqueous solution, the NDMA characteristic peaks were clearly obtained and the detection limit is low as 10-8 M. For comparison, the Au nanorods array substrate without zwitterion modified had strong background signal caused by the active surfaced plasma resonance in the gold nanostructure. This result shows that the function of the zwitterionic copolymer can not only weaken the strong PL background signal, but utilize its high hydrophilicity to absorb the “water-soluable” small toxic-molecule into SERS hot spots.
1. E. Proksch, International Journal of Hygiene and Environmental Health, 2001, 204, 103-110.
2. A. R. Tricker and R. Preussmann, Mutation Research, 1991, 259, 277-289.
3. N. P. Sen, S. W. Seaman, B. P. Y. Lan, D. Weber and D. Lewis, Food Chem., 1995, 54, 327-337.
4. J. E. Grebel, C. C. Young and I. H. M. Suffet, J. Chromatogr. A, 2006, 1117, 11-18.
5. S. D. Richardson, M. J. Plewa, E. D. Wagner, R. Schoeny and D. M. DeMarini, Mutat. Res.-Rev. Mutat. Res., 2007, 636, 178-242.
6. S. H. Park, S. Wei, B. Mizaikoff, A. E. Taylor, C. Favero and C. H. Huang, Environ. Sci. Technol., 2009, 43, 1360-1366.
7. M. H. Plumlee and M. Reinhard, Environ. Sci. Technol., 2007, 41, 6170-6176.
8. C. Lee, W. Choi, Y. G. Kim and J. Yoon, Environ. Sci. Technol., 2005, 39, 2101-2106.
9. C. K. Wang, X. J. Zhang, J. Wang and C. Chen, Front. Env. Sci. Eng., 2012, 6, 770-777.
10. B. G. Kwon, J.-O. Kim and J.-K. Kwon, Environmental Engineering Research, 2013, 18, 29-35.
11. Y. Y. Zhao, J. Boyd, S. E. Hrudey and X. F. Li, Environ. Sci. Technol., 2006, 40, 7636-7641.
12. P. Kulshrestha, K. C. McKinstry, B. O. Fernandez, M. Feelisch and W. A. Mitch, Environ. Sci. Technol., 2010, 44, 3369-3375.
13. F. Breider and U. von Gunten, Anal. Chem., 2017, 89, 1574-1582.
14. X. Ceto, C. P. Saint, C. W. K. Chow, N. H. Voelcker and B. Prieto-Simon, Sens. Actuator B-Chem., 2016, 237, 613-620.
15. J. Hollender, S. G. Zimmermann, S. Koepke, M. Krauss, C. S. McArdell, C. Ort, H. Singer, U. von Gunten and H. Siegrist, Environ. Sci. Technol., 2009, 43, 7862-7869.
16. L. A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney and M. J. Natan, Anal. Chem., 1998, 70, 341-362.
17. C. V. Raman and K. S. Krishnan, Nature, 1928, 121, 501-502.
18. A. J. McQuillan, Notes Rec. R. Soc., 2009, 63, 209-209.
19. M. Fleischmann, P. J. Hendra and A. J. McQuillan, Chemical Physics Letters, 1974, 26, 163-166.
20. M. G. Albrecht and J. A. Creighton, J. Am. Chem. Soc., 1977, 99, 5215-5217.
21. R. P. Van Duyne, in Chemical and Biochemical Applications of Lasers, Academic Press, 1979, DOI: https://doi.org/10.1016/B978-0-12-505404-1.50009-X, pp. 101-185.
22. M. Kerker, D.-S. Wang and H. Chew, Appl. Opt., 1980, 19, 4159-4174.
23. D. S. Wang and M. Kerker, Phys. Rev. B, 1981, 24, 1777-1790.
24. H. X. Xu, J. Aizpurua, M. Kall and P. Apell, Phys. Rev. E, 2000, 62, 4318-4324.
25. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe and R. P. Van Duyne, Mater. Today, 2012, 15, 16-25.
26. M. I. Stockman, L. N. Pandey, L. S. Muratov and T. F. George, Phys. Rev. Lett., 1994, 72, 2486-2489.
27. D. J. Bergman and M. I. Stockman, Phys. Rev. Lett., 2003, 90, 4.
28. W. P. Ambrose, P. M. Goodwin, J. H. Jett, A. Van Orden, J. H. Werner and R. A. Keller, Chem. Rev., 1999, 99, 2929-2956.
29. P. Anger, P. Bharadwaj and L. Novotny, Phys. Rev. Lett., 2006, 96, 4.
30. E. Betzig and R. J. Chichester, Science, 1993, 262, 1422-1425.
31. J. K. Gimzewski and C. Joachim, Science, 1999, 283, 1683-1688.
32. A. Celedon, S. Sun, G. Bowman, D. Wirtz and P. Searson, Biophys. J., 2009, 96, 556A-556A.
33. K. C. Neuman and A. Nagy, Nat. Methods, 2008, 5, 491-505.
34. S. M. Nie and S. R. Emery, Science, 1997, 275, 1102-1106.
35. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari and M. S. Feld, Phys. Rev. Lett., 1997, 78, 1667-1670.
36. A. M. Michaels, J. Jiang and L. Brus, J. Phys. Chem. B, 2000, 104, 11965-11971.
37. J. P. Camden, J. A. Dieringer, Y. M. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz and R. P. Van Duyne, J. Am. Chem. Soc., 2008, 130, 12616-+.
38. S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz and R. P. Van Duyne, J. Am. Chem. Soc., 2011, 133, 4115-4122.
39. A. Ahmed and R. Gordon, Nano Lett., 2012, 12, 2625-2630.
40. A. B. Zrimsek, A. I. Henry and R. P. Van Duyne, J. Phys. Chem. Lett., 2013, 4, 3206-3210.
41. M. Rycenga, P. H. C. Camargo, W. Y. Li, C. H. Moran and Y. N. Xia, J. Phys. Chem. Lett., 2010, 1, 696-703.
42. M. Rycenga, X. H. Xia, C. H. Moran, F. Zhou, D. Qin, Z. Y. Li and Y. A. Xia, Angew. Chem.-Int. Edit., 2011, 50, 5473-5477.
43. E. V. Formo, S. M. Mahurin and S. Dai, ACS Appl. Mater. Interfaces, 2010, 2, 1987-1991.
44. S. M. Mahurin, J. John, M. J. Sepaniak and S. Dai, Applied Spectroscopy, 2011, 65, 417-422.
45. X. Y. Zhang, J. Zhao, A. V. Whitney, J. W. Elam and R. P. Van Duyne, J. Am. Chem. Soc., 2006, 128, 10304-10309.
46. N. A. Abu Hatab, J. M. Oran and M. J. Sepaniak, ACS Nano, 2008, 2, 377-385.
47. G. Das, F. Mecarini, F. Gentile, F. De Angelis, H. G. M. Kumar, P. Candeloro, C. Liberale, G. Cuda and E. Di Fabrizio, Biosens. Bioelectron., 2009, 24, 1693-1699.
48. J. Grand, S. Kostcheev, J. L. Bijeon, M. L. de la Chapelle, P. M. Adam, A. Rumyantseva, G. Lerondel and P. Royer, Synth. Met., 2003, 139, 621-624.
49. A. Gole, C. J. Orendorff and C. J. Murphy, Langmuir, 2004, 20, 7117-7122.
50. M. Rycenga, J. M. McLellan and Y. N. Xia, Chemical Physics Letters, 2008, 463, 166-171.
51. N. Guarrotxena and G. C. Bazan, Adv. Mater., 2014, 26, 1941-1946.
52. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander and N. J. Halas, Nano Lett., 2005, 5, 1569-1574.
53. S. L. Kleinman, B. Sharma, M. G. Blaber, A. I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz and R. P. Van Duyne, J. Am. Chem. Soc., 2013, 135, 301-308.
54. X. L. Li, H. L. Hu, D. H. Li, Z. X. Shen, Q. H. Xiong, S. Z. Li and H. J. Fan, ACS Appl. Mater. Interfaces, 2012, 4, 2180-2185.
55. H. Schneidewind, K. Weber, M. Zeisberger, U. Hubner, A. Dellith, D. Cialla-May, R. Mattheis and J. Popp, Nanotechnology, 2014, 25, 10.
56. A. Indrasekara, S. Meyers, S. Shubeita, L. C. Feldman, T. Gustafsson and L. Fabris, Nanoscale, 2014, 6, 8891-8899.
57. C. H. Moran, M. Rycenga, X. H. Xia, C. M. Cobley and Y. N. Xia, Nanotechnology, 2014, 25, 7.
58. Y. H. Ngo, D. Li, G. P. Simon and G. Garnier, J. Colloid Interface Sci., 2013, 392, 237-246.
59. X. H. Li, W. C. H. Choy, X. G. Ren, D. Zhang and H. F. Lu, Adv. Funct. Mater., 2014, 24, 3114-3122.
60. H. K. Lee, Y. H. Lee, I. Y. Phang, J. Q. Wei, Y. E. Miao, T. X. Liu and X. Y. Ling, Angew. Chem.-Int. Edit., 2014, 53, 5054-5058.
61. G. S. Georgiev, E. B. Karnenska, E. D. Vassileva, I. P. Kamenova, V. T. Georgieva, S. B. Iliev and I. A. Ivanov, Biomacromolecules, 2006, 7, 1329-1334.
62. S. J. Singer and G. L. Nicolson, Science, 1972, 175, 720-+.
63. A. L. Lewis, Colloid Surf. B-Biointerfaces, 2000, 18, 261-275.
64. R. E. Holmlin, X. X. Chen, R. G. Chapman, S. Takayama and G. M. Whitesides, Langmuir, 2001, 17, 2841-2850.
65. Y. Kadoma, N. Nakabayashi, E. Masuhara and J. Yamauchi, Kobunshi Ronbunshu, 1978, 35, 423-427.
66. K. Ishihara, T. Ueda and N. Nakabayashi, Polym. J., 1990, 22, 355-360.
67. W. Feng, S. P. Zhu, K. Ishihara and J. L. Brash, Langmuir, 2005, 21, 5980-5987.
68. Y. Chang, S. F. Chen, Z. Zhang and S. Y. Jiang, Langmuir, 2006, 22, 2222-2226.
69. Y. Chang, S. C. Liao, A. Higuchi, R. C. Ruaan, C. W. Chu and W. Y. Chen, Langmuir, 2008, 24, 5453-5458.
70. Z. Zhang, T. Chao, S. F. Chen and S. Y. Jiang, Langmuir, 2006, 22, 10072-10077.
71. R. S. Kane, P. Deschatelets and G. M. Whitesides, Langmuir, 2003, 19, 2388-2391.
72. Z. Zhang, S. F. Chen and S. Y. Jiang, Biomacromolecules, 2006, 7, 3311-3315.
73. Z. Zhang, H. Vaisocherova, G. Cheng, W. Yang, H. Xue and S. Y. Jiang, Biomacromolecules, 2008, 9, 2686-2692.
74. F. Sun, J. R. Ella-Menye, D. D. Galvan, T. Bai, H. C. Hung, Y. N. Chou, P. Zhang, S. Y. Jiang and Q. M. Yu, ACS Nano, 2015, 9, 2668-2676.
75. F. Sun, H. C. Hung, A. Sinclair, P. Zhang, T. Bai, D. D. Galvan, P. Jain, B. W. Li, S. Y. Jiang and Q. M. Yu, Nat. Commun., 2016, 7, 9.
76. K. Sivashanmugan, P. C. Liu, K. W. Tsai, Y. N. Chou, C. H. Lin, Y. Chang and T. C. Wen, Nanoscale, 2017, 9, 2865-2874.
77. Y. Chang, W. Yandi, W. Y. Chen, Y. J. Shih, C. C. Yang, Y. Chang, Q. D. Ling and A. Higuchi, Biomacromolecules, 2010, 11, 1101-1110.
78. Y. Chang, Y. Chang, A. Higuchi, Y. J. Shih, P. T. Li, W. Y. Chen, E. M. Tsai and G. H. Hsiue, Langmuir, 2012, 28, 4309-4317.
79. W. L. Zhang, G. J. Li, Y. L. Lin, L. Y. Wang and S. Q. Wu, J. Biomater. Sci.-Polym. Ed., 2017, 28, 1935-1949.
80. Y. N. Chou, T. C. Wen and Y. Chang, Acta Biomater., 2016, 40, 78-91.
81. K. Sivashanmugan, J. D. Liao, B. H. Liu and C. K. Yao, Anal. Chim. Acta, 2013, 800, 56-64.
82. W. Wang, Z. P. Li, B. H. Gu, Z. Y. Zhang and H. X. Xu, ACS Nano, 2009, 3, 3493-3496.
83. J. Guthmuller and B. Champagne, ChemPhysChem, 2008, 9, 1667-1669.
84. N. Cheng, A. A. Brown, O. Azzaroni and W. T. S. Huck, Macromolecules, 2008, 41, 6317-6321.
85. E. Lenderink and D. A. Wiersma, Chemical Physics Letters, 1994, 218, 586-592.
校內:2023-07-18公開