簡易檢索 / 詳目顯示

研究生: 葉佳樺
Yeh, Chia-Hua
論文名稱: 新型具耦合電感之無電解電容多階層換流器研製
A Novel Electrolytic Capacitor-Less Multilevel Inverter with Coupled Inductor
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 57
中文關鍵詞: 多階層換流器無電解電容耦合電感數位訊號處理器
外文關鍵詞: Multilevel inverter, electrolytic, capacitor-less, coupled inductor, DSP(Digital Signal Processor)
相關次數: 點閱:135下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在於研製一新型多階層換流器。本架構之主要概念為應用多繞組之耦合電感,來取代傳統架構中用來分壓之電解電容。如此一來,該電路之壽命即不會受限於電解電容。由於電路不需要藉由電容將輸入電壓分層,因此不需要額外的平衡電路。除了上述優點,本架構也減少了功率元件的使用,僅需十顆開關即可使產生七階層的輸出。本論文中將會說明電路工作原理以及控制概念、流程。控制器採用TI公司所生產的TMS320F28035數位訊號處理器來實現。最後將研製一輸入電壓320V,輸出功率220 Vrms/3kW之實驗室雛形電路用以驗證電路效能,其滿載效率為94.82%,最大效率於74.34%負載為96.39%,最後並提出其延伸電路。

    In this thesis, a novel multilevel electrolytic capacitor-less inverter is proposed. With the three-winding coupled inductor, input voltage can be divided without electrolytic capacitors. Hence, no voltage-balancing circuit is needed. Less power switches are required for the proposed circuit compared to the existing topologies. Only ten switches are required to generate seven-level output. The operating principle, mode analysis and modulation method are introduced. The control scheme is implemented by TMS320F28035. Finally, a laboratory prototype of seven-level inverter with 320V input voltage and 220 Vrms/3kW output is implemented. The efficiency under full load is 94.82%, the maximum efficiency is 96.39% under 74.34 % load. Lastly, extended circuits are also proposed.

    Chinese Abstract……………………………………………………………I Abstract……………………………………………………………………II Acknowledgement…………………………………………………………III Contents………………………………………………………………IV List of Tables………………………………………………………………VI List of Figures……………………………………………………………VII Chapter 1. Introduction……………………………………………………1 1.1 Backgrounds and Motivations………………………………………1 1.2 Organization of Thesis………………………………………………3 Chapter 2. Existing Multilevel Topologies…………………………………4 2.1 Single-Phase Five-Level Inverter with Coupled Inductors………... 4 2.2 Switched-Capacitor Multilevel Inverter……………….……………6 2.3 Single-Phase Seven-Level Inverter with Coupled Inductor…………7 2.4 DC-Voltage-Balancing Circuit Including a Single Coupled Inductor for a Five-Level Diode-Clamped PWM Inverter………………....... 9 2.5 Simplified Multilevel Inverter ……………………………………..12 2.6 Cascaded H-Bridge Inverter ……………………………………….15 2.7 Diode-Clamped Inverter……………………………………….…19 2.8 Capacitor-Clamped Inverter………………………………….…….21 2.9 Drawbacks of Existing Multilevel Topologies…………………….25 Chapter 3. Operating Principle of the Proposed Novel Electrolytic Capacitor-less Multilevel Inverter…………………..………………26 3.1 Proposed Circuit Topology…………………………………………26 3.2 Three-winding Coupled Inductor…………………………………..27 3.2.1 Role of the Three-winding Coupled Inductor………………...27 3.2.2 Design of the Three-winding Coupled Inductor……………...29 3.3 Circuit Analysis…...……………………….…………………..…...30 3.3.1 Mode Analysis of the Proposed Topology………...…….……30 3.3.2 Modulation Scheme of the Proposed Topology…….………37 3.3.3 Voltage Stress on Power Switches………………………….41 3.4 Winding Turns Calculation…………………………………………41 3.5 Topology Comparison…………...…………………………………42 3.6 Simulation Results………………………………………………….43 Chapter 4. Experimental Results of the Proposed Novel Electrolytic Capacitor-less Multilevel Inverter……………………...…………………44 4.1 Specification of the Proposed Circuit………………………………44 4.2 Experimental Results of the Proposed Topology…………………45 4.3 Discussion of Simulation and Experimental Results………………48 Chapter 5. Conclusions and Future Study………………………………49 5.1 Conclusions……………………...…………………………………49 5.2 Extension of the proposed topology………………………………50 5.3 Future Study…………………………………………………..……51 References…………………………………………………………………52

    [1] Y. Li and Y. W. Li, “Decoupled power control for an inverter based
    Low voltage microgrid in autonomous operation,” in Proc. IEEE 6th Int. Power Electron. and Motion Control Conf.(IPEMC), WuHan, pp. 2490-2496, 2009.
    [2] Y. Li, D. M. Vilathgamuwa, and P. H. Loh, “Design, analysis, and real-time testing of a controller for multibus microgrid system,” IEEE Trans. on Power Electron., vol. 19, no. 5, pp. 1195-1204, 2004.
    [3] C. L. Chen, Y. W. Li , J. S. Lai, Y. S. Lee, and D. Martin, “Design of parallel inverters for smooth mode transfer microgrid applications,” IEEE Trans. on Power Electron., vol. 25, no. 1, pp. 6-15, 2010.
    [4] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, “Evaluation of current controllers for distributed power generation systems,” IEEE Trans. on Power Electron., vol. 24, no. 3, pp. 654-664, 2009.
    [5] Y. A. -R. I. Mohamed and E. F. El-Saadany, “Hybrid variable- structure control with evolutionary optimum-tuning algorithm for fast grid-voltage regulation using inverter-based distributed generation,” IEEE Trans. on Power Electron., vol. 23, no. 3, pp. 1334-1341, 2008.
    [6] Y. A. -R. I. Mohamed and E. F. El-Saadany, “Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids,” IEEE Trans. on Power Electron., vol. 23, no. 6, pp. 2806-2816, 2008.
    [7] Y. W. Li and C. N. Kao, “An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid,” IEEE Trans. on Power Electron., vol. 24, no. 12, pp. 2977-2988, 2009.
    [8] N. A. Rahim, M. F. M. Elias, and W. P. Hew, “Transistor-clamped h-bridge based cascaded multilevel inverter with new method of capacitor voltage balancing,” IEEE Trans. on Industrial Electron., vol. 60, no. 8, pp. 2943-2956, 2013.
    [9] A. Shukla, A. Ghosh, and A. Joshi, “Capacitor voltage balancing schemes in flying capacitor multilevel inverters,” IEEE Trans. on Power Electron., vol. 23, no. 2, pp. 518-529, 2008.
    [10] K. Wang, Y. Li, and Z. Zheng, “Voltage balancing control and experiments of a novel modular multilevel converter,” in Proc. 2010 Energy Conversion Congress and Exposition (ECCE), Atlanta, GA, pp. 3691-3696, 2010.
    [11] K. Sano and H. Fujita, “Voltage-balancing circuit based on a resonant switched-capacitor converter for multilevel inverters,” IEEE Trans. on Industry Applications, vol. 44, no. 6, pp. 1768-1776, 2008.
    [12] K. Hasegawa and H. Akagi, “A new dc-voltage-balancing circuit including a single coupled inductor for a five-level diode-clamped PWM inverter,” IEEE Trans. on Industry Applications, vol. 47, no. 2, pp. 841-852, 2011.
    [13] A. Shukla, A. Ghosh, and A. Joshi, “Flying capacitor-based chopper circuit for dc capacitor voltage balancing in diode-clamped multilevel inverter,” IEEE Trans. on Industrial Electron., vol. 57, no. 7, pp. 2249-2261, 2010.
    [14] Z. Shu, X. He, Z. Wang, D. Qiu, and Y. Jing, “Voltage liange balancing approaches for diode-clamped multilevel converters using auxiliary capacitor-based circuits,” IEEE Trans. on Power Electron., vol. 28, no. 5, pp. 2111-2124, 2013.
    [15] J. Zhao, Y. Han, X. He, C. Tan, J. Cheng, and R. Zhao, “Multilevel circuit topologies based on the switched-capacitor converter and diode-clamped converter,” IEEE Trans. on Power Electron., vol. 26, no. 8, pp. 2127-2136, 2011.
    [16] K. Sano, and H. Fujita, “A new control method of a resonant switched-capacitor converter and its application to balancing of the split dc voltages in a multilevel inverter,” in Proc. 2007 Power Conversion Conference (PCC), Nagoya, GA, pp. 122-129, 2007.
    [17] T. Ito, M. Kamaga, Y. Sato, and H. Ohashi, “An investigation of
    voltage balancing circuit for dc capacitors in diode-clamped multilevel inverters to realize high output power density converters,” in Proc. 2010 Energy Conversion Congress and Exposition (ECCE), Atlanta, GA, pp. 3675-3682, 2010.
    [18] S. Wang, X. Ruan, K. Yao, and Z. Ye, “A flicker-free electrolytic capacitorless ac–dc led driver,” in Proc. 2011 Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, pp. 2318-2325, 2011.
    [19] K. Zhao, P. Ciufo, and S. Perera, “Lifetime analysis of aluminum
    electrolytic capacitor subject to voltage fluctuations,” in Proc. 14th Int. Conf. Harmonics, Quality, Power (ICHQP), Bergamo, Italy, pp. 1–5, 2010.
    [20] A. Lahyani, P. Venet, G. Grellet, and P. J. Viverge, “Failure
    prediction of electrolytic capacitors during operation of a switch mode power supply,” IEEE Trans. on Power Electron., vol. 13, no. 6, pp. 1199–1207, 1988.
    [21] Y. Chen, H. Wu, M. Chou and K. Lee, “Online failure prediction
    of the electrolytic capacitor for lc filter of switching-mode power converters“, IEEE Trans. on Industrial Electron., vol. 55, no. 1, pp. 400-406,2008.
    [22] Z. Li, P. Wang, Y. Li, and F. Gao, “A novel single-phase five-level inverter with coupled inductors,” IEEE Trans. on Power Electron., vol. 27, no. 6, pp. 2716–2725, 2012.
    [23] J. Salmon, A. Knight, and J. Ewanchuk, “Single phase multi-level PWM inverter topologies using coupled inductors,” in Proc. IEEE Power Electron. Spec. Conf. (PESC), Island of Rhodes, Greece, pp. 802–808, 2008.
    [24] J. Salmon, J. Ewanchuk, and A. M. Knight, “PWM inverters using split-wound coupled inductors,” IEEE Trans. on Industry Applications, vol. 45, no. 6, pp. 2001–2009, 2009.
    [25] Y. Hinago and H. Koizumi, “A switched-capacitor inverter using
    series/parallel conversion with inductive load,” IEEE Trans. on Industrial Electron., vol. 59, no. 2, pp. 5344-5351, 2012.
    [26] Y. Hinago and H. Koizumi, “A single-phase multilevel inverter
    using switched series/parallel dc voltage sources,” IEEE Trans. on Industrial Electron., vol. 57, no. 8, pp. 2643 – 2650, 2010.
    [27] C. C. Chen, “Novel single-phase seven-level inverter with
    coupled inductor,” Unpublished Master’s Thesis, Department of Electrical Engineering, National Cheng Kung University, 2013.
    [28] K. Hasegawa and H. Akagi, “A new dc-voltage-balancing circuit
    including a single coupled inductor for a five-level diode-clamped PWM inverter,” IEEE Trans. on Industry Applications, vol. 47, no. 2, pp. 841-852, 2011.
    [29] G. Ceglia, V. Guzman, C. Sanchez, F. Ibanez, J. Walter, and M. I.
    Gimenez, “A new simplified multilevel inverter topology for dc-ac conversion,” IEEE Trans. on Power Electron., vol. 21, no. 5, pp.1311-1319, 2006.
    [30] J. Y. Tsai, “Study and implementation of a single-phase novel
    multilevel inverter, ” Unpublished Master’s Thesis, Department of Electrical Engineering, National Cheng Kung University, 2012.
    [31] R. Gupta, A. Ghosh, and A. Joshi, “Switching characterization of
    cascaded multilevel-inverter-controlled systems,” IEEE Trans. on Industry Applications, vol. 55, no. 3, pp. 1047-1058, 2008.
    [32] N. Sujitha., P. G. Scholar, and K. S. Rangasamy, “A new hybrid
    cascaded h-bridge multilevel inverter - performance analysis,” in Proc.
    IEEE 2012 Advances in Engineering, Science and Management
    (ICAESM), Nagapattinam, Tamil Nadu, India, pp. 46 – 50, 2012.
    [33] N. S. Choi, J. G. Cho, and G. H. Cho, “A general circuit topology
    of multilevel inverter,” in Proc. IEEE Power Electronics Specialists Conference (PESC), Cambridge, MA, pp. 96-103, 1991.
    [34] D. W. Kang, B. K. Lee, J. H. Jeon, T. J. Kim, and D. S. Hyun, “A
    symmetric carrier technique of crpwm for voltage balance method of flying-capacitor multilevel inverter,” IEEE Trans. on Industrial Electron., vol. 52, no. 3, pp. 879-888, 2005.
    [35] A. Ruderman and B. Reznikov, “Seven-level single-leg flying
    capacitor converter voltage balancing dynamics analysis,” in Proc. IEEE European Conference on Power Electronics and Applications (EPE), Birmingham, United Kingdom, pp. 1-10, 2011.

    下載圖示 校內:2019-08-21公開
    校外:2019-08-21公開
    QR CODE