簡易檢索 / 詳目顯示

研究生: 蔡卓錚
Tsai, Cho-Cheng
論文名稱: 低溫燒結SrV2O6及低損耗Li2Mg2(MoO4)3介電材料在微波頻段之研究與應用
Study and Applications of Low-firable SrV2O6 and Low-loss Li2Mg2(MoO4)3 Dielectrics at Microwave Frequencies
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 109
中文關鍵詞: 微波介電低溫燒結低損耗
外文關鍵詞: microwave dielectric, low-firable, low-loss
相關次數: 點閱:43下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要分別介紹三大部分,第一和二部分將介紹新開發的微波介電材料,第三部分則是濾波器的模擬與實測。
    首先第一部分為SrV2O6陶瓷之微波介電特性,由實驗結果發現,在燒結溫度為650℃並持溫4小時擁有最佳的微波介電特性ε_r~9.7、Q×f~21,000 GHz、τ_f~-146 ppm⁄℃。但從XRD繞射圖和EDS觀察到二次相Sr2V2O7的存在。第二部分為Li2Mg2(MoO4)3陶瓷之微波介電特性,觀察實驗結果,在燒結溫度為880℃並持溫4小時擁有最佳的微波介電特性ε_r~9.5、Q×f~80,000 GHz、τ_f~-69 ppm⁄℃。
    最後第三部分,我們以HFSS模擬濾波器電路,並將電路實作於FR4、氧化鋁、Li2Mg2(MoO4)3基板上,由結果可知,高介電常數能使電路面積縮小且高Q×f使濾波器表現更好。

    In order to obtain a novel low-temperature co-fired ceramics, microwave dielectric properties of SrV2O6 and Li2Mg2(MoO4)3 ceramics had been investigated. The experimental results show that SrV2O6 has best properties at sintering temperature 650℃ for 4 hours, with ε_r~9.7, Q×f~21,000 GHz and τ_f~-146 ppm⁄℃﹔the Li2Mg2(MoO4)3 has best properties at sintering temperature 880℃ for 4 hours, with ε_r~9.5, Q×f~80,000 GHz and τ_f~-69 ( ppm)⁄℃.In this paper, the band-pass filter was designed with U-shaped structure which contains Source-Load Coupling, Open-stub. According to the results of measurements, the performance of the filter was improved by using low-loss dielectric ceramics as the substrate, and its size was reduced by using high dielectric constant ceramics.

    摘要 I 致謝 VII 目錄 VIII 圖目錄 XIII 表目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 3 第二章 文獻回顧 5 2-1 微波技術與共振器發展 5 2-2 材料的燒結 7 2-2-1 材料燒結之擴散方式 8 2-2-2 材料燒結之過程 9 2-2-3 燒結的種類 10 2-3 介電共振器原理 12 2-4 微波介電材料之特性 15 2-4-1 介電係數(Dilectric Constant, ε_r) 15 2-4-2 品質因數(Quality Factor, Q) 19 2-4-3 共振頻率溫度飄移係數(τ_f) 22 2-4-4 介電特性量測方法 23 2-5 拉曼光譜與分子振動模態簡介 31 2-5-1 拉曼光譜(Raman spectra) 31 2-5-2 分子的振動模態(Vibrational modes) 32 2-6 低溫共燒陶瓷(LTCC)技術簡介 33 第三章 微帶線及濾波器原理 34 3-1 濾波器原理 34 3-1-1 濾波器的簡介 34 3-1-2 濾波器之種類及其頻率響應 35 3-2 微帶線原理 38 3-2-1 微帶傳輸線的簡介 38 3-2-2 微帶線的傳輸模態 39 3-2-3 微帶線各項參數公式計算與考量 40 3-2-4 微帶線的不連續效應 43 3-2-5 微帶線的損失 50 3-3 微帶線諧振器的種類 51 3-3-1 λ/4短路微帶線共振器 52 3-3-2 λ/2開路微帶線共振器 53 3-4 共振器間的耦合形式 55 3-4-1 電場耦合(Electric Coupling) 56 3-4-2 磁場耦合(Magnetic Coupling) 59 3-4-3 混和耦合(Mixed Coupling) 63 3-5 濾波器設計 67 3-5-1 U型微帶線共振器 67 3-5-2 Source-Load Coupling 68 3-5-3 四分之一波長開路殘斷 69 第四章 實驗程序與量測儀器 72 4-1 微波介電材料的製備 72 4-1-1 粉末的製備與球磨 73 4-1-2 粉末的煆燒 73 4-1-3 加入黏劑、過篩 73 4-1-4 壓模成形、去黏劑及燒結 74 4-2 微波介電材料的量測與分析 74 4-2-1 密度測量 74 4-2-2 X-Ray分析 75 4-2-3 SEM分析 75 4-2-4 拉曼光譜儀分析 76 4-3 濾波器的製作過程 77 第五章 實驗結果與討論 79 5-1 SrV2O6的微波介電特性 79 5-1-1 SrV2O6的XRD相組成分析 79 5-1-2 SrV2O6的拉曼光譜分佈 81 5-1-3 SrV2O6的SEM、EDS分析 82 5-1-4 SrV2O6的相對密度分析 84 5-1-5 SrV2O6的介電係數(ε_r)分析 84 5-1-6 SrV2O6的品質因數與共振頻率乘積(Q×f)分析 85 5-1-7 SrV2O6的共振頻率溫度飄移係數(τ_f)分析 86 5-2 Li2Mg2(MoO4)3的微波介電特性 87 5-2-1 Li2Mg2(MoO4)3的XRD相組成分析 87 5-2-2 Li2Mg2(MoO4)3的拉曼光譜分析 89 5-2-3 Li2Mg2(MoO4)3的SEM、EDS分析 90 5-2-4 Li2Mg2(MoO4)3的相對密度分析 92 5-2-5 Li2Mg2(MoO4)3的介電係數(ε_r)分析 92 5-2-6 Li2Mg2(MoO4)3的品質因數與共振頻率乘積(Q×f)分析 93 5-2-7 Li2Mg2(MoO4)3的共振頻率溫度飄移係數(τ_f)分析 94 5-2-8 Li2Mg2(MoO4)3的晶格常數 95 5-3 濾波器的模擬與實作 98 5-3-1 玻璃纖維基板(FR4)之模擬與實作結果 98 5-3-2 氧化鋁基板之濾波器模擬與實作結果 100 5-3-3 Li2Mg2(MoO4)3(自製基板)之濾波器模擬與實作結果 102 第六章 結論 105 參考文獻 107

    1. Kawashima, S., et al., Ba (Zn1/3Ta2/3) O3 ceramics with low dielectric loss at microwave frequencies. Journal of the American Ceramic Society, 1983. 66(6): p. 421-423.
    2. Matsumoto, K., et al. Ba (Mg 1/3 Ta 2/3) O 3 ceramics with ultra-low loss at microwave frequencies. in Applications of Ferroelectrics. 1986 Sixth IEEE International Symposium on. 1986. IEEE.
    3. Vreeland, F.K., A Sine-Wave Electrical Oscillator of the Organ Pipe Type. Physical Review (Series I), 1908. 27(4): p. 286.
    4. Goerth, J. Early magnetron development especially in Germany. in Origins and Evolution of the Cavity Magnetron (CAVMAG), 2010 International Conference on the. 2010. IEEE.
    5. Varian, R.H. and S.F. Varian, A high frequency oscillator and amplifier. Journal of Applied Physics, 1939. 10(5): p. 321-327.
    6. Thumm, M. Historical German contributions to physics and applications of electromagnetic oscillations and waves. in Proc. Int. Conf. on Progress in Nonlinear Science, Nizhny Novgorod, Russia. 2001.
    7. Redhead, P., The Invention of the Cavity Magnetron and its Introduction into Canada and the USA. Physics in Canada, 2001. 57(6): p. 321.
    8. Richtmyer, R., Dielectric resonators. Journal of Applied Physics, 1939. 10(6): p. 391-398.
    9. Cohn, S.B., Microwave bandpass filters containing high-Q dielectric resonators. IEEE Transactions on Microwave Theory and Techniques, 1968. 16(4): p. 218-227.
    10. Smith, W.F., 劉品均(譯), 施佑蓉(譯), 材料科學與工程(第三版). 2005: 高立圖書.
    11. Cahn, J.W. and R. Heady, Analysis of Capillary Forces in Liquid‐Phase Sintering of Jagged Particles. Journal of the American Ceramic Society, 1970. 53(7): p. 406-409.
    12. Huppmann, W.J. and G. Petzow, Sintering processes. 1979: Plenum Press.
    13. German, R., Liquid phase sintering, 1985. Chapter. 1: p. 5-8.
    14. Jean, J. and C. Lin, Coarsening of tungsten particles in W-Ni-Fe alloys. Journal of materials science, 1989. 24(2): p. 500-504.
    15. Pozar, D.M., Microwave engineering. 2009: John Wiley & Sons.
    16. Kajfez, D., Basic principles give understanding of dielectric waveguides and resonators. Microwave System News, 1983. 13: p. 152-161.
    17. Kajfez, D., A.W. Glisson, and J. James, Computed modal field distributions for isolated dielectric resonators. IEEE transactions on Microwave Theory and Techniques, 1984. 32(12): p. 1609-1616.
    18. 張盛富, 戴明鳳, 無線通信之射頻被動電路設計 1998: 全華出版社.
    19. 鄭景太, 淺談高頻低損失介電材料. 工業材料,176期, 2001.
    20. W.D.Kingery, et al., 陶瓷材料概論. 1988: 曉園出版社.
    21. Hakki, B. and P. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Transactions on Microwave Theory and Techniques, 1960. 8(4): p. 402-410.
    22. Courtney, W.E., Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Transactions on Microwave Theory and Techniques, 1970. 18(8): p. 476-485.
    23. Wheless, P. and D. Kajfez. The use of higher resonant modes in measuring the dielectric constant of dielectric resonators. in Microwave Symposium Digest, 1985 IEEE MTT-S International. 1985. IEEE.
    24. Kobayashi, Y. and M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Transactions on Microwave Theory and Techniques, 1985. 33(7): p. 586-592.
    25. Sebastian, M.T. and H. Jantunen, Low loss dielectric materials for LTCC applications: a review. International Materials Reviews, 2008. 53(2): p. 57-90.
    26. Geiger, R.L., P.E. Allen, and N.R. Strader, VLSI design techniques for analog and digital circuits. Vol. 90. 1990: McGraw-Hill New York.
    27. Pucel, R.A., D.J. Masse, and C.P. Hartwig, Losses in microstrip. IEEE transactions on microwave theory and techniques, 1968. 16(6): p. 342-350.
    28. Hong, J.-S.G. and M.J. Lancaster, Microstrip filters for RF/microwave applications. Vol. 167. 2004: John Wiley & Sons.
    29. Kompa, G., Practical microstrip design and applications. 2005: Artech House.
    30. Garg, R., I. Bahl, and M. Bozzi, Microstrip lines and slotlines. 2013: Artech house.
    31. Matthaei, G.L., L. Young, and E.M.T. Jones, Microwave filters, impedance matching networks and coupling structures. Artech House, 1980.
    32. Denlinger, E.J., Losses of microstrip lines. IEEE Transactions on Microwave Theory and Techniques, 1980. 28(6): p. 513-522.
    33. Zhang, X.-C., Z.-Y. Yu, and J. Xu, Design of microstrip dual-mode filters based on source-load coupling. IEEE Microwave and Wireless Components Letters, 2008. 18(10): p. 677-679.
    34. Zhou, M., X. Tang, and F. Xiao, Miniature microstrip bandpass filter using resonator-embedded dual-mode resonator based on source-load coupling. IEEE Microwave and Wireless Components Letters, 2010. 20(3): p. 139-141.
    35. Lee, J.-R., J.-H. Cho, and S.-W. Yun, New compact bandpass filter using microstrip/spl lambda//4 resonators with open stub inverter. IEEE Microwave and Guided Wave Letters, 2000. 10(12): p. 526-527.
    36. Chung, M.-S., I.-S. Kim, and S.-W. Yun. Varactor-tuned hairpin bandpass filter with enhanced stopband performance. in Microwave Conference, 2006. APMC 2006. Asia-Pacific. 2006. IEEE.
    37. Li, Y., et al., Pressure-induced amorphization of metavanadate crystals SrV2O6 and BaV2O6. Journal of Applied Physics, 2015. 118(3): p. 035902.
    38. Joung, M.R., et al., Formation process and microwave dielectric properties of the R2V2O7 (R= Ba, Sr, and Ca) ceramics. Journal of the American Ceramic Society, 2009. 92(12): p. 3092-3094.
    39. Smit, J.P., et al., Probing the vanadyl and molybdenyl bonds in complex vanadomolybdate structures. Inorganic chemistry, 2006. 45(2): p. 521-528.
    40. Shannon, R.D., Dielectric polarizabilities of ions in oxides and fluorides. Journal of Applied physics, 1993. 73(1): p. 348-366.

    無法下載圖示 校內:2023-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE