簡易檢索 / 詳目顯示

研究生: 呂專豪
Lu, Chuan-Hao
論文名稱: 具漸變摻雜基極之磷化銦鎵/砷化鎵穿透式集極 異質雙載子電晶體之研究
Study of InGaP/GaAs Tunnel-Collector HBT with Compositionally Graded Base
指導教授: 許渭州
Hsu, W. C.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 68
中文關鍵詞: 穿透式集極漸變掺雜基極
外文關鍵詞: tunnel-collector, compositionally graded base
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具漸變摻雜基極之磷化銦鎵/砷化鎵穿透式集極
    異質雙載子電晶體之研究

    呂專豪* 許渭州**

    國立成功大學電機系微電子工程研究所

    摘要

    在本文中,我們利用低壓有機金屬化學氣相沈積法,成長具有銦組成成份漸變式(Compositionally Graded)摻雜基極且具有穿透式集極之磷化銦鎵/砷化鎵(InGaP/GaAs)系統異質雙載子電晶體。實驗結果顯示偏移電壓(offset voltage) 由130 mV降為25 mV,而膝電壓(knee voltage) 由910 mV降為400 mV,此主因為基-射(B-E)及基-集(B-C)接面之不對稱因加入穿透式集極而改善。溫度變化方面以穿透式集極結構較不明顯,在電流密度20 kA/cm2下室溫從300 K到450 K直流增異變化分別是5%及35%,顯示出優異之熱穩定度特性。高頻特性方面,fT 經由銦組成成份漸變式基極效果可由37 GHz提升至44 GHz,而且fmax也可由40 GHz提升至53 GHz。此改善主因為漸變式基極之內建電場(縮短基極傳輸時間)及較小基極電阻(RB)。

    作者*
    指導教授**

     Study of InGaP/GaAs Tunnel-Collector HBT with       Compositionally Graded Base

          Chuan-Hao Lu* Wei-Chou Hsu**

      Institute of Microelectronics, Department of          Electrical Engineering 
       National Cheng Kung University,Tainan,
              Taiwan, R.O.C.

             Abstract

    In this thesis, we fabricated InGaP/GaAs heterojunction bipolar transistors with indium compositionally graded base and tunnel-collector layer by MOCVD system. Experimental results show that the offset voltage reduces from 130 mV to 25 mV, and knee voltage reduces from 910 mV to 400 mV due to the asymmetry of base-emitter (B-E) and base-collector (B-C) junctions is eased by the addition of tunnel-collector layer. Furthermore, tunnel-collector structure also has less temperature sensitivity due to the variations in current gain is below 5% compared to 35% of SHBT at temperature from 300 K to 450 K at current density of 20 kA/cm2. This reveals excellent thermal stability characteristic. In RF performance, the indium compositionally graded base makes fT rise from 37 GHz to 44 GHz and fmax increase from 40 GHz to 53 GHz. This improvement is mainly resulted from the build-in electrical field (shorter base-transient time) and smaller base resistance (RB).

    * Author
    ** Advisor
     

    Content Abstract (Chinese) Abstract (English) Table Captions Figure Captions Chapter 1 Introduction.....................................................1 Chapter 2 Device Structure and Fabrication Process.........................4 2-1 Device Structure..........................................................4 2-2 Device Fabrication Process................................................4 2-2-1 Emitter Metallization................................................4 2-2-2 Emitter Mesa.........................................................5 2-2-3 Base Metallization...................................................5 2-2-4 Base Mesa............................................................6 2-2-5 Collector Metallization..............................................6 2-2-6 Collector Mesa (Device Isolation)....................................7 2-3 RF Process................................................................7 Chapter 3 Experimental Results and Discussions.............................9 3-1 Indium Compositionally Graded Base........................................9 3-2 Tunnel-Collector Layer...................................................11 3-3 DC performance...........................................................14 3-4 Temperature Dependence...................................................17 3-5 RF performance...........................................................20 Chapter 4 Conclusion and Prospects........................................22 4-1 Conclusion...............................................................22 4-2 Feature Work.............................................................22 References......................................................................24 Figures.........................................................................32

    Reference

    [1]. G. B. Gao, H. Morkoc, and M. F. Chang, “Heterojunction bipolar transistor    design for power applications,” IEEE Trans. Electron Devices, vol. 39,      pp. 1987–1997, 1992.
    [2]. M. Hafizi, D. C. Streit, L. T. Tran, K. W. Kobayashi, D. K. Umemoto, A. K.    Oki, and S. K. Wang, “Experimental study of AlGaAs/GaAs HBT device design    for power applications,” IEEE Electron Device Letters, vol. 12,         pp.581–583, 1991.
    [3]. P. M. Asbeck, M.-C. F. Chang, J. A. Higgins, N. H. Sheng, G. J. Sullivan,     and K.-C. Wang, “GaAlAs/GaAs heterojunction bipolar transistors: issues and    prospects for application,” IEEE Trans. Electron Devices, Vol. 36, pp.      2032–2042, 1989.
    [4]. H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,”    IEEE Proc. vol. 70, p.13, 1982.
    [5]. W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-GaAlAs heterojunction    transistor for high frequency operation,” Solid-State Electron, Vol. 15, p.    12, 1972.
    [6]. H. Tews, R. Neumann, T. Humerhager., et al. “Abrupt Mg Doping in thin      Graded Base GaAs/GaAlAs Heterojunction Bipolar-Transistors,” J. Appl. Phys,    vol. 68, pp. 1318–1323, 1990.
    [7]. T. Oka, K. Hirata, H. Suzuki, K. Ouchi, H. Uchiyama, T. Taniguchi, K.       Mochizuki, and T. Nakamura, “High-speed small-scale InGaP/GaAs HBT        technology and its application to integrated circuits,” IEEE Trans.       Electron Devices, vol. 48, pp. 2625–2630, 2001.
    [8]. K. Runge, P. J. Zampardi, R. L. Pierson, P. B. Thomas, S. M. Beccue, R. Yu,    and K.C. Wang, “High speed AlGaAs/GaAs HBT circuits for up to 40 Gb/s      optical communication,” Gallium Arsenide Integrated Circuit (GaAs IC)      Symposium, Technical Digest 1997, 19th Annual, pp. 211–214, 1997.
    [9]. P. Asbeck, “GaAs HBT Technology: Devices and Models for High Speed Circuit    Design,” Flat Panel Display Technology/Technologies for a Global         Information Infrastructure/ICs for New Age Lightwave Communications/RF      Optoelectronics, 1995 Digest of the LEOS Summer Topical Meetings , pp.      41–41, 1995.
    [10]. S. A. Bashar, F.A. Amin, A. A. Rezazadeh, and M. A. Crouch,           “Characteristics of AlGaAs/GaAs and InGaP/GaAs HBTs at high temperature,”    High Performance Electron Devices for Microwave and Optoelectronic        Applications Workshop, EDMO, pp. 126–131, 1996.
    [11]. M. J. Mondry, and H. Kroemer, “Heterostructure bipolar transistor using a    (Ga,InP) emitter on a GaAs base, grown by molecular beam epitaxy,” IEEE     Electron Device Letters, vol. EDL-6, pp. 175–177, 1985.
    [12]. W. Liu, S. K. Fan, T. Henderson, D. Davito, “Temperature dependences of     current gains in GaInP/GaAs and AlGaAs/GaAs heterojunction bipolar        transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 1351–1353, 1993.
    [13]. M. Hafizi, W. E. Stanchina, R. A. Metzger, P. A. Macdonald, F. Williams,     Jr. “Temperature dependence of DC and RF characteristics of AlInAs/GaInAs    HBT's,” IEEE Trans. Electron Devices, vol. 40, pp. 1583–1588, 1993.
    [14]. W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C.    C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs     heterojunction bipolar transistor,” IEEE Electron Device Letters, vol. 21,    pp. 524–527, 2000
    [15]. M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long, and D. I. Babic,         “Determination of valence and conduction-band discontinuities at the       (Ga,In)P/GaAs heterojunction by C-V profiling,” J. Appl. Phys, vol. 61, pp.    643–649, 1987.
    [16]. T. Kobayashi, K. Taira, F. Nakamura, and H. Kawai, “Band lineup for a      GaInP/GaAs heterojunction measured by a high-gain Npn heterojunction bipolar    transistor grown by metalorganic chemical vapor deposition,” J. Appl. Phys,    vol. 65, pp. 4898–4902, 1989.
    [17]. M. E. Hafizi, C. R. Crowell, L. M. Pawlowicz, and M. E. Kim, “Improved     current gain and f/sub T/ through doping profile selection in linearly      graded heterojunction bipolar transistors,” IEEE Trans. Electron Devices,    vol. 37, pp. 1779–1788, 1990.
    [18]. W. S. Lour, “High-gain, low offset voltage, and zero potential spike by     InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT),”     IEEE Trans. Electron Devices, vol. 44, pp. 346–348, 1997.
    [19]. B. C. Lye, P. A. Houston, H. K. Yow, and C. C. Button, “GaInP/AlGaAs/GaInP    Double Heterojunction Bipolar Transistors with Zero Conduction Band Spike at    the Collector,” IEEE Trans. Electron Devices, vol. 45, pp. 2417–2421,      1990.
    [20]. Y. K. Chen, R. Rapre, W. T. Tsang, and M. C. Wu, “InGaP/GaAs/InGaP double    heterostructure bipolar transistors with carbon-doped base grown by CBE,”    Electronics Letters, vol. 28 , pp. 1228–1230, 1992.
    [21]. K. Mochizuki, R. J. Welty, and P. M. Asbeck, “GaInP/GaAs collector-up      tunneling-collector heterojunction bipolar transistors with zero-offset and    low-knee-voltage characteristics,” Electronics Letters, vol. 36, pp.       264–265, 2000.
    [22]. K. Mochizuki, R. J. Welty, P. M. Asbeck, C. R. Lutz, R. E. Welser, S. J.     Whitney, and N. Pan, “GaInP/GaAs collector-up tunneling-collector        heterojunction bipolar transistors (C-up TC-HBTs): optimization of        fabrication process and epitaxial layer structure for high-efficiency       high-power amplifiers,” IEEE Trans. Electron Devices, vol. 47, pp.        2277–2283, 2000.
    [23]. J. I. Song, C. Caneau, K-B Chough, and W. P. Hong, “GaInP/GaAs double      heterojunction bipolar transistor with high fT, fmax, and breakdown        voltage,” IEEE Electron Device Letters, vol. EDL-15, pp. 10–12, 1994.
    [24]. Q. M. Zhang, G. L. Tan, J. M. Xu, and D. J. Day, “Current gain and       transit-time effects in HBTs with graded emitter and base regions,” IEEE     Electron Device Letters, vol. 11, pp. 508–510, 1990.
    [25]. L. Tran, D. Streit, K. Kobayashi, J. Velebir, S. Bui, and A. Oki,        “InAlAs/InGaAs HBT exponentially graded base doping and graded InGaAlAs     emitter-base junction,” Indium Phosphide and Related Materials, 1992.,      Fourth International Conference, pp. 438–441, 1992.
    [26]. J. Song, J. S. Yuan, “Graded base profiles on the performance of AlGaAs     HBTs” Int J Electron, vol. 86, pp. 699–705, 1999.
    [27]. D. C. Streit, M. E. Hafizi, D. K. Umemoto, J. R. Velebir, L. T. Tran, A. K.    Oki, M. E. Kim, S. K. Wang, C. W. Kim, L. P. Sadwick, R. J. Hwu, “Effect of    exponentially graded base doping on the performance of GaAs/AlGaAs        heterojunction bipolar transistors,” IEEE Electron Device Letters, vol. 12,    pp. 194–196, 1991.
    [28]. W. Liu, D. Costa, J. S. Harris, Jr. “Current gain of graded AlGaAs/GaAs     heterojunction bipolar transistors with and without a base quasi-electric     field,” IEEE Trans. Electron Devices, vol. 39, pp. 2422–2429, 1992.
    [29]. E. S. Yang, Y. F. Yang, C. C. Hsu, H. J. Ou, and H. B. Lo, “Temperature     dependence of current gain of GaInP/GaAs heterojunction and            heterostructure-emitter bipolar transistors,” IEEE Trans. Electron Devices,    vol. 46, pp. 320–323, 1999.
    [30]. K. S. Stevens, R. J. Welty, R. E. Welser, B. E. Landini, P. M. Asbeck,      S. C. Hung, W. P. Lu, and S. C. Feng, “Impact of compositionally graded    base regions on the DC and RF properties of reduced turn-on voltage       InGaP-GaInAsN DHBTs,” IEEE Trans. Electron Devices, vol. 51, pp. 1545–     1553, 2004.
    [31]. P. M. DeLuca, C. R. Lutz, R. E. Welser, T. Y. Chi, E. K. Huang, R. J.      Welty, and P. M. Asbeck, “Implementation of reduced turn-on voltage InGaP    HBTs using graded GaInAsN base regions,” IEEE Electron Device Letters, vol.    23 pp. 582–584, 2002.
    [32]. D. A. Ahmari, G. Raghavan, Q. J. Hartmann, M. L. Hattendorf, M. Feng, and    G. E. Stillman, “Temperature dependence of InGaP/GaAs heterojunction       bipolar transistor DC and small-signal behavior” IEEE Trans. Electron      Devices, vol. 46, pp. 634–640, 1999.
    [33]. J. Masum, P. Parmiter, T. J. Hall, M. Crouch, “Current analysis of       polyimide passivated InGaP/GaAs HBT,” Circuits, IEE Proc. –Circuits       Devices Systems, , vol. 143, pp. 307–312, 1996.
    [34]. M. Ohkubo, N. Ikeda, and T. Ninomiya, “Graded-GaAs1-xPx Bases in        Heterojunction Bipolar Transistors with InGaP Emitters,” Microwave and      Optical Technology Letters, vol. 11, pp. 150–152, 1996.
    [35]. S. C. M. Ho, and D. L. Pulfrey, “The effect of base grading on the gain     and high-frequency performance of AlGaAs/GaAs heterojunction bipolar       transistors,” IEEE Trans. Electron Devices, vol. 36, pp. 2173–2182, 1989.
    [36]. H. Ito, T. Ishibashi, and T. Sugeta, “Current gain enhancement in graded    base AlGaAs/GaAs HBTs associated with electron drift motion,” Japan J.      Appl. Phys., vol. 24, pp.241–243, 1985.
    [37]. S. I. Fu, “Study of GaAs-based heterojuncton bipolar transistors (HBTs),”    Thesis for degree of Master of Science, EE, NCKU, Republic of China, 2004.
    [38]. D. H. Huang, “InGaP/GaAs graded-base heterojuncton bipolar transistor      grown by Metalorgainic Chemical Vapor Deposition,” Thesis for degree of     Master of Science, EE, NCKU, Republic of China, 2002.
    [39]. D. C. Streit, A. K. Oki, D. K. Umemoto, L. T. Tran, and K. W. Kobayashi,     “High performance HBTs with built-in base fields: exponentially-graded      doping vs. graded composition,” High Speed Semiconductor Devices and       Circuits, Proceedings IEEE/Cornell Conference on Advanced Concepts in, pp.    325–333, 1991.
    [40]. H. Tews, P. Zwicknagl, R. Neumann, et al. “Mg-doped graded base         GaAs/AlGaAs Heterojunction Bipolar-Transistor grown by Metalorgainic       Vapor-phase epitaxy,” Electron Letter, vol. 26, pp. 58–59, 1990.
    [41]. William Liu. “Handbook of III-V heterojunction bipolar transistors,” New    York:/Wiley, 1998.
    [42]. V. Swaminathan, and A. T. Macrander, “Materials Aspects of GaAs and InP     Based Structures,” New Jersey:/Prentice Hall, p. 27, 1991.
    [43]. S. M. Sze, “Physics of Semiconductor Devices,” 2nd. New York:/Wiley, pp.    57–92, 1981.
    [44]. J. I. Song, C. Caneau, W. P. Hong, and K. B. Chough, “Characterization of    GaInP/GaAs double-heterojunction bipolar transistors with different        collector design,” Electron. Lett., vol. 29, pp. 1881–1883, 1993.
    [45]. F. Ren, C. R. Abernathy, S. J. Pearton, and P. W. Wisk, “InGaP/GaAs based    single and double heterojunction bipolar transistors grown by MOMBE,”      Electron. Lett., vol. 28, pp. 1150–1152, 1992.
    [46]. W. S. Hobson, F. Ren, J. Lothian, and S. J. Pearton, “InGaP/GaAs        single-and double-heterojunction bipolar transistors grown by metalorgainic    vapor phase epitaxy,” Semicond. Sci. Technol., vol. 7, pp. 598–600, 1992.
    [47]. R. J. Welty, K. Mochizuki, C. R. Lutz, and P. M. Asbeck, “Tunnel-collector    GaInP/GaAs HBTs for microwave power amplifiers,” in IEEE BiPolar BiCMOS     Circuits Technol. Meeting, Minneapolis, MN, pp. 74–77, 2001.
    [48]. J. Xu, and M. Shur, “A tunneling emitter bipolar transistor,” IEEE       Electron Device Lett., vol. EDL–7, pp. 416–418, 1986.
    [49]. F. E. Najjar, et al., “DC characterization of the AlGaAs/GaAs tunneling     emitter bipolar transistor,” Appl. Phys. Lett., vol. 50, pp. 1915–1917,     1987.
    [50]. B. Mazhair, G. B. Gao, and H. Morkoc, “Collector-emitter offset voltage in    heterojunction bipolar transistors,” Solid-State Electron, vol. 34, pp.     315–321, 1991.
    [51]. C. C. Wu, and S. S. Lu, “Small offset-voltage In0.49Ga0.51P/GaAs        double-barrier bipolar transistor,” IEEE Electron Device Lett., vol. 13,     pp. 418– 420, 1992.
    [52]. S. Tiwari, and S. L. Wright, “Transport and related properties of        (Ga,Al)As/GaAs double heterostructure bipolar transistors,” IEEE Trans.     Electron Devices, vol. ED-34, pp. 185–198, 1987.
    [53]. J. S. Yuan, “Effect of base profile on the base transit time of the       bipolar transistor for all levels of injection,” IEEE Trans. Electron      Devices, vol. 41, pp.212–216, 1994.
    [54]. R. J. Welty, K. Mochizuki, C. R. Lutz, R. E. Welser, and P. M. Asbeck,      “Design and performance of tunnel collector HBTs for microwave power       amplifiers,” IEEE Trans. Electron Devices, vol. 50 , pp. 894–900, 2003.
    [55]. Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, Y. J. Chen, and Y. S. Lin,      “Investigation of InGaP/GaAs heterojunction bipolar transistor with doping    graded base,” JVST, B 21, pp. 2555–2557, 2003.
    [56]. Y. S. Lin, W. C. Hsu, F. C. Jong, Y. Z. Chiou, Y. J. Chen, and J. J. Tang    “Characteristics of spike-free single and double heterostructure-emitter     bipolar transistors,” Jpn. J. Appl. Phys., vol. 43, pp. 3285–3289, 2004.
    [57]. C. Monier, A. G. Baca, P. C. Chang, F. D. Newman, N. Y. Li, S. Z. Sun, E.    Armour, and H. Q. Hou, “Significant operating voltage reduction on        high-speed GaAs-based heterojunction bipolar transistors using a low band     gap InGaAsN base layer,” IEEE Trans. Electron Devices, vol. 49, pp.       1329–1335, 2002.
    [58]. C. M. S. Ng, P. A. Houston, and H. K. Yow, “Analysis of the temperature     dependence of current gain in heterojunction bipolar transistors,” IEEE     Trans. Electron Devices, vol. 44, pp. 17–24, 1997.
    [59]. R. E. Welser, N. Pan, C. R. Lutz, D. P. Vu, P. J. Zampardi, R. L. Pierson,    B. T. McDermott, “High performance Al0.35Ga0.65As/GaAs HBT's” IEEE       Electron Device Lett., vol. 21, pp. 196–199, 2000.
    [60]. C. Y. Chen, S. I. Fu, S. Y. Cheng, C. Y. Chang, C. H. Tsai, C. H. Yen, S.    F. Tsai, R. C. Liu, and W. C. Liu, “Influences of surface sulfur treatments    on the temperature-dependent characteristics of HBTs” IEEE Trans. Electron    Devices, vol. 51, pp. 1963–1971, 2004.
    [61]. M. Ohkubo, S. Tanaka, M. Irikawa, and T. Kikuta, “Heavily Zn-doped       graded-base AlGaAs/GaAs HBTs grown by MOCVD” IEEE Trans. Electron Devices,    vol. 38, pp. 1557–1560, 1991.
    [62]. D. E. Kren, A. A. Rezazadeh, and N. Tothill, “Temperature dependence of     current gains in high C-doped base HBTs” Electronics Letters, vol. 30, pp.    825–826, 1994.
    [63].  H. K. Yow, P. A. Houston, C.-M. S. Ng, C. Button, and J. S. Roberts,      “High-temperature DC characteristics of Al/sub x/Ga/sub 0.52-x/In/sub      0.48/P/GaAs heterojunction bipolar transistors grown by metal organic       vapor phase epitaxy,” IEEE Trans. Electron Devices, vol. 43, pp. 2–7,      1996.

    無法下載圖示 校內:2102-06-24公開
    校外:2102-06-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE