| 研究生: |
呂專豪 Lu, Chuan-Hao |
|---|---|
| 論文名稱: |
具漸變摻雜基極之磷化銦鎵/砷化鎵穿透式集極
異質雙載子電晶體之研究 Study of InGaP/GaAs Tunnel-Collector HBT with Compositionally Graded Base |
| 指導教授: |
許渭州
Hsu, W. C. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 穿透式集極 、漸變掺雜基極 |
| 外文關鍵詞: | tunnel-collector, compositionally graded base |
| 相關次數: | 點閱:89 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具漸變摻雜基極之磷化銦鎵/砷化鎵穿透式集極
異質雙載子電晶體之研究
呂專豪* 許渭州**
國立成功大學電機系微電子工程研究所
摘要
在本文中,我們利用低壓有機金屬化學氣相沈積法,成長具有銦組成成份漸變式(Compositionally Graded)摻雜基極且具有穿透式集極之磷化銦鎵/砷化鎵(InGaP/GaAs)系統異質雙載子電晶體。實驗結果顯示偏移電壓(offset voltage) 由130 mV降為25 mV,而膝電壓(knee voltage) 由910 mV降為400 mV,此主因為基-射(B-E)及基-集(B-C)接面之不對稱因加入穿透式集極而改善。溫度變化方面以穿透式集極結構較不明顯,在電流密度20 kA/cm2下室溫從300 K到450 K直流增異變化分別是5%及35%,顯示出優異之熱穩定度特性。高頻特性方面,fT 經由銦組成成份漸變式基極效果可由37 GHz提升至44 GHz,而且fmax也可由40 GHz提升至53 GHz。此改善主因為漸變式基極之內建電場(縮短基極傳輸時間)及較小基極電阻(RB)。
作者*
指導教授**
Study of InGaP/GaAs Tunnel-Collector HBT with Compositionally Graded Base
Chuan-Hao Lu* Wei-Chou Hsu**
Institute of Microelectronics, Department of Electrical Engineering
National Cheng Kung University,Tainan,
Taiwan, R.O.C.
Abstract
In this thesis, we fabricated InGaP/GaAs heterojunction bipolar transistors with indium compositionally graded base and tunnel-collector layer by MOCVD system. Experimental results show that the offset voltage reduces from 130 mV to 25 mV, and knee voltage reduces from 910 mV to 400 mV due to the asymmetry of base-emitter (B-E) and base-collector (B-C) junctions is eased by the addition of tunnel-collector layer. Furthermore, tunnel-collector structure also has less temperature sensitivity due to the variations in current gain is below 5% compared to 35% of SHBT at temperature from 300 K to 450 K at current density of 20 kA/cm2. This reveals excellent thermal stability characteristic. In RF performance, the indium compositionally graded base makes fT rise from 37 GHz to 44 GHz and fmax increase from 40 GHz to 53 GHz. This improvement is mainly resulted from the build-in electrical field (shorter base-transient time) and smaller base resistance (RB).
* Author
** Advisor
Reference
[1]. G. B. Gao, H. Morkoc, and M. F. Chang, “Heterojunction bipolar transistor design for power applications,” IEEE Trans. Electron Devices, vol. 39, pp. 1987–1997, 1992.
[2]. M. Hafizi, D. C. Streit, L. T. Tran, K. W. Kobayashi, D. K. Umemoto, A. K. Oki, and S. K. Wang, “Experimental study of AlGaAs/GaAs HBT device design for power applications,” IEEE Electron Device Letters, vol. 12, pp.581–583, 1991.
[3]. P. M. Asbeck, M.-C. F. Chang, J. A. Higgins, N. H. Sheng, G. J. Sullivan, and K.-C. Wang, “GaAlAs/GaAs heterojunction bipolar transistors: issues and prospects for application,” IEEE Trans. Electron Devices, Vol. 36, pp. 2032–2042, 1989.
[4]. H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” IEEE Proc. vol. 70, p.13, 1982.
[5]. W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-GaAlAs heterojunction transistor for high frequency operation,” Solid-State Electron, Vol. 15, p. 12, 1972.
[6]. H. Tews, R. Neumann, T. Humerhager., et al. “Abrupt Mg Doping in thin Graded Base GaAs/GaAlAs Heterojunction Bipolar-Transistors,” J. Appl. Phys, vol. 68, pp. 1318–1323, 1990.
[7]. T. Oka, K. Hirata, H. Suzuki, K. Ouchi, H. Uchiyama, T. Taniguchi, K. Mochizuki, and T. Nakamura, “High-speed small-scale InGaP/GaAs HBT technology and its application to integrated circuits,” IEEE Trans. Electron Devices, vol. 48, pp. 2625–2630, 2001.
[8]. K. Runge, P. J. Zampardi, R. L. Pierson, P. B. Thomas, S. M. Beccue, R. Yu, and K.C. Wang, “High speed AlGaAs/GaAs HBT circuits for up to 40 Gb/s optical communication,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, Technical Digest 1997, 19th Annual, pp. 211–214, 1997.
[9]. P. Asbeck, “GaAs HBT Technology: Devices and Models for High Speed Circuit Design,” Flat Panel Display Technology/Technologies for a Global Information Infrastructure/ICs for New Age Lightwave Communications/RF Optoelectronics, 1995 Digest of the LEOS Summer Topical Meetings , pp. 41–41, 1995.
[10]. S. A. Bashar, F.A. Amin, A. A. Rezazadeh, and M. A. Crouch, “Characteristics of AlGaAs/GaAs and InGaP/GaAs HBTs at high temperature,” High Performance Electron Devices for Microwave and Optoelectronic Applications Workshop, EDMO, pp. 126–131, 1996.
[11]. M. J. Mondry, and H. Kroemer, “Heterostructure bipolar transistor using a (Ga,InP) emitter on a GaAs base, grown by molecular beam epitaxy,” IEEE Electron Device Letters, vol. EDL-6, pp. 175–177, 1985.
[12]. W. Liu, S. K. Fan, T. Henderson, D. Davito, “Temperature dependences of current gains in GaInP/GaAs and AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 1351–1353, 1993.
[13]. M. Hafizi, W. E. Stanchina, R. A. Metzger, P. A. Macdonald, F. Williams, Jr. “Temperature dependence of DC and RF characteristics of AlInAs/GaInAs HBT's,” IEEE Trans. Electron Devices, vol. 40, pp. 1583–1588, 1993.
[14]. W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Letters, vol. 21, pp. 524–527, 2000
[15]. M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long, and D. I. Babic, “Determination of valence and conduction-band discontinuities at the (Ga,In)P/GaAs heterojunction by C-V profiling,” J. Appl. Phys, vol. 61, pp. 643–649, 1987.
[16]. T. Kobayashi, K. Taira, F. Nakamura, and H. Kawai, “Band lineup for a GaInP/GaAs heterojunction measured by a high-gain Npn heterojunction bipolar transistor grown by metalorganic chemical vapor deposition,” J. Appl. Phys, vol. 65, pp. 4898–4902, 1989.
[17]. M. E. Hafizi, C. R. Crowell, L. M. Pawlowicz, and M. E. Kim, “Improved current gain and f/sub T/ through doping profile selection in linearly graded heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 37, pp. 1779–1788, 1990.
[18]. W. S. Lour, “High-gain, low offset voltage, and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT),” IEEE Trans. Electron Devices, vol. 44, pp. 346–348, 1997.
[19]. B. C. Lye, P. A. Houston, H. K. Yow, and C. C. Button, “GaInP/AlGaAs/GaInP Double Heterojunction Bipolar Transistors with Zero Conduction Band Spike at the Collector,” IEEE Trans. Electron Devices, vol. 45, pp. 2417–2421, 1990.
[20]. Y. K. Chen, R. Rapre, W. T. Tsang, and M. C. Wu, “InGaP/GaAs/InGaP double heterostructure bipolar transistors with carbon-doped base grown by CBE,” Electronics Letters, vol. 28 , pp. 1228–1230, 1992.
[21]. K. Mochizuki, R. J. Welty, and P. M. Asbeck, “GaInP/GaAs collector-up tunneling-collector heterojunction bipolar transistors with zero-offset and low-knee-voltage characteristics,” Electronics Letters, vol. 36, pp. 264–265, 2000.
[22]. K. Mochizuki, R. J. Welty, P. M. Asbeck, C. R. Lutz, R. E. Welser, S. J. Whitney, and N. Pan, “GaInP/GaAs collector-up tunneling-collector heterojunction bipolar transistors (C-up TC-HBTs): optimization of fabrication process and epitaxial layer structure for high-efficiency high-power amplifiers,” IEEE Trans. Electron Devices, vol. 47, pp. 2277–2283, 2000.
[23]. J. I. Song, C. Caneau, K-B Chough, and W. P. Hong, “GaInP/GaAs double heterojunction bipolar transistor with high fT, fmax, and breakdown voltage,” IEEE Electron Device Letters, vol. EDL-15, pp. 10–12, 1994.
[24]. Q. M. Zhang, G. L. Tan, J. M. Xu, and D. J. Day, “Current gain and transit-time effects in HBTs with graded emitter and base regions,” IEEE Electron Device Letters, vol. 11, pp. 508–510, 1990.
[25]. L. Tran, D. Streit, K. Kobayashi, J. Velebir, S. Bui, and A. Oki, “InAlAs/InGaAs HBT exponentially graded base doping and graded InGaAlAs emitter-base junction,” Indium Phosphide and Related Materials, 1992., Fourth International Conference, pp. 438–441, 1992.
[26]. J. Song, J. S. Yuan, “Graded base profiles on the performance of AlGaAs HBTs” Int J Electron, vol. 86, pp. 699–705, 1999.
[27]. D. C. Streit, M. E. Hafizi, D. K. Umemoto, J. R. Velebir, L. T. Tran, A. K. Oki, M. E. Kim, S. K. Wang, C. W. Kim, L. P. Sadwick, R. J. Hwu, “Effect of exponentially graded base doping on the performance of GaAs/AlGaAs heterojunction bipolar transistors,” IEEE Electron Device Letters, vol. 12, pp. 194–196, 1991.
[28]. W. Liu, D. Costa, J. S. Harris, Jr. “Current gain of graded AlGaAs/GaAs heterojunction bipolar transistors with and without a base quasi-electric field,” IEEE Trans. Electron Devices, vol. 39, pp. 2422–2429, 1992.
[29]. E. S. Yang, Y. F. Yang, C. C. Hsu, H. J. Ou, and H. B. Lo, “Temperature dependence of current gain of GaInP/GaAs heterojunction and heterostructure-emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 46, pp. 320–323, 1999.
[30]. K. S. Stevens, R. J. Welty, R. E. Welser, B. E. Landini, P. M. Asbeck, S. C. Hung, W. P. Lu, and S. C. Feng, “Impact of compositionally graded base regions on the DC and RF properties of reduced turn-on voltage InGaP-GaInAsN DHBTs,” IEEE Trans. Electron Devices, vol. 51, pp. 1545– 1553, 2004.
[31]. P. M. DeLuca, C. R. Lutz, R. E. Welser, T. Y. Chi, E. K. Huang, R. J. Welty, and P. M. Asbeck, “Implementation of reduced turn-on voltage InGaP HBTs using graded GaInAsN base regions,” IEEE Electron Device Letters, vol. 23 pp. 582–584, 2002.
[32]. D. A. Ahmari, G. Raghavan, Q. J. Hartmann, M. L. Hattendorf, M. Feng, and G. E. Stillman, “Temperature dependence of InGaP/GaAs heterojunction bipolar transistor DC and small-signal behavior” IEEE Trans. Electron Devices, vol. 46, pp. 634–640, 1999.
[33]. J. Masum, P. Parmiter, T. J. Hall, M. Crouch, “Current analysis of polyimide passivated InGaP/GaAs HBT,” Circuits, IEE Proc. –Circuits Devices Systems, , vol. 143, pp. 307–312, 1996.
[34]. M. Ohkubo, N. Ikeda, and T. Ninomiya, “Graded-GaAs1-xPx Bases in Heterojunction Bipolar Transistors with InGaP Emitters,” Microwave and Optical Technology Letters, vol. 11, pp. 150–152, 1996.
[35]. S. C. M. Ho, and D. L. Pulfrey, “The effect of base grading on the gain and high-frequency performance of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 36, pp. 2173–2182, 1989.
[36]. H. Ito, T. Ishibashi, and T. Sugeta, “Current gain enhancement in graded base AlGaAs/GaAs HBTs associated with electron drift motion,” Japan J. Appl. Phys., vol. 24, pp.241–243, 1985.
[37]. S. I. Fu, “Study of GaAs-based heterojuncton bipolar transistors (HBTs),” Thesis for degree of Master of Science, EE, NCKU, Republic of China, 2004.
[38]. D. H. Huang, “InGaP/GaAs graded-base heterojuncton bipolar transistor grown by Metalorgainic Chemical Vapor Deposition,” Thesis for degree of Master of Science, EE, NCKU, Republic of China, 2002.
[39]. D. C. Streit, A. K. Oki, D. K. Umemoto, L. T. Tran, and K. W. Kobayashi, “High performance HBTs with built-in base fields: exponentially-graded doping vs. graded composition,” High Speed Semiconductor Devices and Circuits, Proceedings IEEE/Cornell Conference on Advanced Concepts in, pp. 325–333, 1991.
[40]. H. Tews, P. Zwicknagl, R. Neumann, et al. “Mg-doped graded base GaAs/AlGaAs Heterojunction Bipolar-Transistor grown by Metalorgainic Vapor-phase epitaxy,” Electron Letter, vol. 26, pp. 58–59, 1990.
[41]. William Liu. “Handbook of III-V heterojunction bipolar transistors,” New York:/Wiley, 1998.
[42]. V. Swaminathan, and A. T. Macrander, “Materials Aspects of GaAs and InP Based Structures,” New Jersey:/Prentice Hall, p. 27, 1991.
[43]. S. M. Sze, “Physics of Semiconductor Devices,” 2nd. New York:/Wiley, pp. 57–92, 1981.
[44]. J. I. Song, C. Caneau, W. P. Hong, and K. B. Chough, “Characterization of GaInP/GaAs double-heterojunction bipolar transistors with different collector design,” Electron. Lett., vol. 29, pp. 1881–1883, 1993.
[45]. F. Ren, C. R. Abernathy, S. J. Pearton, and P. W. Wisk, “InGaP/GaAs based single and double heterojunction bipolar transistors grown by MOMBE,” Electron. Lett., vol. 28, pp. 1150–1152, 1992.
[46]. W. S. Hobson, F. Ren, J. Lothian, and S. J. Pearton, “InGaP/GaAs single-and double-heterojunction bipolar transistors grown by metalorgainic vapor phase epitaxy,” Semicond. Sci. Technol., vol. 7, pp. 598–600, 1992.
[47]. R. J. Welty, K. Mochizuki, C. R. Lutz, and P. M. Asbeck, “Tunnel-collector GaInP/GaAs HBTs for microwave power amplifiers,” in IEEE BiPolar BiCMOS Circuits Technol. Meeting, Minneapolis, MN, pp. 74–77, 2001.
[48]. J. Xu, and M. Shur, “A tunneling emitter bipolar transistor,” IEEE Electron Device Lett., vol. EDL–7, pp. 416–418, 1986.
[49]. F. E. Najjar, et al., “DC characterization of the AlGaAs/GaAs tunneling emitter bipolar transistor,” Appl. Phys. Lett., vol. 50, pp. 1915–1917, 1987.
[50]. B. Mazhair, G. B. Gao, and H. Morkoc, “Collector-emitter offset voltage in heterojunction bipolar transistors,” Solid-State Electron, vol. 34, pp. 315–321, 1991.
[51]. C. C. Wu, and S. S. Lu, “Small offset-voltage In0.49Ga0.51P/GaAs double-barrier bipolar transistor,” IEEE Electron Device Lett., vol. 13, pp. 418– 420, 1992.
[52]. S. Tiwari, and S. L. Wright, “Transport and related properties of (Ga,Al)As/GaAs double heterostructure bipolar transistors,” IEEE Trans. Electron Devices, vol. ED-34, pp. 185–198, 1987.
[53]. J. S. Yuan, “Effect of base profile on the base transit time of the bipolar transistor for all levels of injection,” IEEE Trans. Electron Devices, vol. 41, pp.212–216, 1994.
[54]. R. J. Welty, K. Mochizuki, C. R. Lutz, R. E. Welser, and P. M. Asbeck, “Design and performance of tunnel collector HBTs for microwave power amplifiers,” IEEE Trans. Electron Devices, vol. 50 , pp. 894–900, 2003.
[55]. Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, Y. J. Chen, and Y. S. Lin, “Investigation of InGaP/GaAs heterojunction bipolar transistor with doping graded base,” JVST, B 21, pp. 2555–2557, 2003.
[56]. Y. S. Lin, W. C. Hsu, F. C. Jong, Y. Z. Chiou, Y. J. Chen, and J. J. Tang “Characteristics of spike-free single and double heterostructure-emitter bipolar transistors,” Jpn. J. Appl. Phys., vol. 43, pp. 3285–3289, 2004.
[57]. C. Monier, A. G. Baca, P. C. Chang, F. D. Newman, N. Y. Li, S. Z. Sun, E. Armour, and H. Q. Hou, “Significant operating voltage reduction on high-speed GaAs-based heterojunction bipolar transistors using a low band gap InGaAsN base layer,” IEEE Trans. Electron Devices, vol. 49, pp. 1329–1335, 2002.
[58]. C. M. S. Ng, P. A. Houston, and H. K. Yow, “Analysis of the temperature dependence of current gain in heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 17–24, 1997.
[59]. R. E. Welser, N. Pan, C. R. Lutz, D. P. Vu, P. J. Zampardi, R. L. Pierson, B. T. McDermott, “High performance Al0.35Ga0.65As/GaAs HBT's” IEEE Electron Device Lett., vol. 21, pp. 196–199, 2000.
[60]. C. Y. Chen, S. I. Fu, S. Y. Cheng, C. Y. Chang, C. H. Tsai, C. H. Yen, S. F. Tsai, R. C. Liu, and W. C. Liu, “Influences of surface sulfur treatments on the temperature-dependent characteristics of HBTs” IEEE Trans. Electron Devices, vol. 51, pp. 1963–1971, 2004.
[61]. M. Ohkubo, S. Tanaka, M. Irikawa, and T. Kikuta, “Heavily Zn-doped graded-base AlGaAs/GaAs HBTs grown by MOCVD” IEEE Trans. Electron Devices, vol. 38, pp. 1557–1560, 1991.
[62]. D. E. Kren, A. A. Rezazadeh, and N. Tothill, “Temperature dependence of current gains in high C-doped base HBTs” Electronics Letters, vol. 30, pp. 825–826, 1994.
[63]. H. K. Yow, P. A. Houston, C.-M. S. Ng, C. Button, and J. S. Roberts, “High-temperature DC characteristics of Al/sub x/Ga/sub 0.52-x/In/sub 0.48/P/GaAs heterojunction bipolar transistors grown by metal organic vapor phase epitaxy,” IEEE Trans. Electron Devices, vol. 43, pp. 2–7, 1996.
校內:2102-06-24公開