| 研究生: |
郭俊超 Kuo, Chun-Chao |
|---|---|
| 論文名稱: |
鹽水溪上游土地改變影響及非工程減洪方法評估 Assessing the Effect of Land Use Change and Non-Structure Flood Mitigation in the Upstream of the Yan-Shoei Creek |
| 指導教授: |
游保杉
Yu, Pao-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 減洪 、非工程方法 、降雨-逕流模式 、土地利用變遷 、水筒模式 、遙感探測 |
| 外文關鍵詞: | Land use change, Remote Sensing, Flood mitigation, non-structure method, Rainfall-runoff model, Tank model |
| 相關次數: | 點閱:131 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣由於經濟發展形成流域內土地都市化嚴重。而都市化對流域內洪水影響程度,是極需探討的主題。本文以鹽水溪流域豐化橋以上集水區為研究區域,探討土地利用改變對都市化後水文歷線及蓄洪能力之影響,及利用非工程減洪方法減輕土地改變的影響。本文利用非監督式分類法、監督式分類方法及主題圖切除配合監督式分類之方法,對1972年Landsat MSS 影像及2000年SPOT 影像個別進行土地利用分類,發現以後者之結果最佳,其中建築面積從1972到2000年增加約1600公頃。因研究流域包含平地及山區,所以嘗試加入水筒模式,與過去可合理模擬山區,運動波理論建立之格網型降雨-逕流模式連結,經過12暴雨事件的率定,證實加入水筒模式可合理模擬降雨-逕流關係。進一步利用此分布型降雨-逕流模式探討土地利用對蓄洪能力之影響程度,發現集水區10年重現期距之設計洪水增加約10%,並利用下游水稻田區作為減洪區域,最後建議合適之減洪區域。
Urbanization is significantly increasing in Taiwan recently because of economic development. The basin Yan-Shoei creek is chosen as the study area to investigate the influence of urbanizing on runoff hydrograph and flood storage ability, which are the subject we concern. To mitigate the influence of land use change, the non-structure flood mitigation method is proposed. 1972 LANDSAT MSS and 2000 SPOT satellite imageries are applied to identify the land use types by using unsupervised, supervised classification methods and the method that the image was classified by supervised classification after the thematic maps were first cut off. We found the last method has the best result. The building area increases about 1600 acres from 1972 to 2000. Because the terrain of study area contains flat area and mountains, so we tried to connect the tank model for flat area with the grid-based distributed rainfall-runoff model, which is based on kinematic wave approach and has reasonable simulation in the mountains before. Calibration from 12 storm events concluded that the model proposed in this work can well simulate the rainfall-runoff relationship. The model is further applied to investigate the impact of land use change on runoff. 10-year flood was found to be increased around 10%. The paddy field at the downstream of the studied area is proposed as the flood mitigation area and the appropriate mitigation area is suggested in this work finally.
1. 王如意、易任,「應用水文學」下冊,國立編譯館出版,茂昌圖書有限公司發行,1979。
2. 王如意、譚智宏,「修正型水筒模式之研究及其應用於流域逕流量之預測」,台灣水利第39卷第三期,第1-23頁,1997。
3. 呂政璋,「降雨-逕流模式模糊多目標率定及視窗化」,碩士論文,國立成功大學水利暨海洋工程研究所,2001。
4. 呂秀慧,「頭前溪流域植生覆蓋變遷之研究」,碩士論文,國立交通大學土木工程研究所,2001。
5. 周天穎、陳美心、張英暉、范月秋,「德基水庫集水區土地利用監測與管理」,中華地理資訊學會第一屆學術研討會論文集,第311頁至320頁,1995。
6. 周天穎,「土地利用變遷對水庫集水區水源涵養影響之評估計畫(一)」,經濟部水資源局,1998。.
7. 周朝富,「大地衛星資訊探討台北地區土地利用變遷之研究」,碩士論文,國立台灣大學森林研究所,1986。
8. 陳信彰,「分佈型降雨-逕流模式之不確定性與敏感度分析」,碩士論文,國立成功大學水利暨海洋工程研究所,1995。
9. 陳榮松、王孝宇,「水田轉作對排水系統之影響評估」,台灣水利,第44卷第4期,第61-71頁,1996。
10. 陳榮松、謝天元,「平地水筒模式應用於排水系統診斷之分析研究」,農業工程學報,第44卷第4期,第52-61頁,1998。
11. 陳榮松、畢嵐杰、賴任瑄,「水筒模式應用於水旱田之降雨-逕流模擬」,九十年度農業工程研討會,第341-348頁,2001。
12. 陳榮松、廖建銘,「複合水筒模式於筏子溪流域之初步應用研究」,第十三屆水利工程研討會,第B113-B120頁,2002。
13. 郭振民,「應用遙測與地理資訊系統於分佈型降雨-逕流模式之研究」,碩士論文,國立成功大學水利暨海洋工程研究所,1998。
14. 黃昱舜,「水田深水灌溉可行性之研究」,國立台灣大學農業工程學研究所碩士論文,2001。
15. 游保杉、王毓麒、郭俊超,「防洪示範區淹水境況模擬與決策支援系統之研究(二)-鹽水溪流域上游丘陵集水區降雨逕流分析(二)」,國科會計畫報告,2002。
16. 游保杉、王毓麒、郭俊超、呂政璋,「視窗化分布型降雨-逕流模式於鹽水溪之應用」台灣水利季刊,第五十卷,第一期,第51-59頁,2002。
17. 楊凱,「遙感圖像處理原理和方法」,測繪出版社,1988。
18. 鄧敏松,「結合多時段遙測影像、耕地坵塊與領域知識之區域式影像辨識法於水稻田耕作調查之應用」,碩士論文,國立成功大學測量工程研究所,1997。
19. 劉光武,「分佈型降雨-逕流模式之研究」,碩士論文,國立成功大學水利暨海洋工程研究所,1991。
20. 鄭玉萩,「格網式分佈型降雨-逕流模式之研究」,碩士論文,國立成功大學水利暨海洋工程研究所,1995。
21. 蔡長泰、周乃昉、游保杉、詹錢登、呂珍謀、吳旻聰、吳秀芳、許銘熙、吳富春、陳榮松、鄒褘,「水稻田調蓄洪水功能評估分級」,水稻田生態措施推廣及環境保護研討會論文集,第218-242頁,2001。
22. 賴任瑄,「水筒模式於水旱田區降雨-逕流模擬之應用」,中興大學土木工程研究所碩士論文,2001。
23. 蕭國鑫,「陸地衛星應用於土地分類及其變遷」,礦業技術,第45-57頁,1987。
24. 蕭國鑫、吳啟南,「遙測資源衛星之發展」,礦業技術,第2-17頁,1983。
25. 簡錦樹等,「台灣地區河海岸人工湖評估與規劃-雲嘉、高屏海岸地區之研究」,經濟部水利司,1996。
26. 顏清連等,「台北都會區大眾捷運系統防洪排水設計」,國立台灣大學水工試驗所研究報告,1989。
27. 簡甫任,「運用知識庫輔助遙測影像分類與土地利用變遷偵測模式建立之研究-以都市區域環境為例」,逢甲大學土地管理研究所碩士論文,2001。
28. 佐藤照子、植原茂次,「以水筒模式解析都市化後的洪水出流特性」,國立防災科學技術中心研究報告,第24號,第145-158頁,1980。(日文)
29. Carlson, T.N. ,Gillies R.R. ,Schmugge T.J., “interpretation of methodologies for indirect measurement of soil water content”, Agricultural and Forest Meteorology, Vol.77,pp.191-205, 1995.
30. Chow, V.T., Maidment, D.R., Mays, L.R., “Applied hydrology” , 1988.
31. Dutta, D., Herath, S, Musiake, K., “Flood inundation simulation in a river basin using a physically based distributed hydrologic model”, Hydorlogical processes, 14, pp.497-519, 2000.
32. Erdas Inc., ERDAS Field Guide Version8.5,U.S.A. , 2001.
33. Gillies, R.R., Carlson T.N., Kustas, W.P., Humes K.S.,“A verification of the ‘Triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature”, International Journal of Remote Sensing, Vol. 18, No.15, pp.3145-3166, 1997.
34. Hsu, M.H., Teng, W.H., Wu, F.C., “Inundation models for the Pa –Chang basin in Taiwan”, Proceedings of th national science council, Republic of China Part A : Physical science and engineering, Vol, No. 2,, pp. 279-289, 1998.
35. James, W. P., J. F. Bell, and D. L. Leslie, ”Size and Location of Detention Storage” Journal of Water Resources Planning and Management, 113(1): pp. 15-27, 1987.
36. Jorgeson, J.D., R.Sands and G.E. Freeman, “Comparison of Potential Runoff Reduction for Various Nonstructural Watershed Management Approaches”, U.S. Army Engineer Waterways Experiment Station, 1995.
37. Konyha, K.D., D.T. Shaw, and K.W. Weiler, “Hydrologic Design of A Wetland: Advantage of Continuous Modeling” Ecological Engineering, 4:pp. 99-116, 1995.
38. Lambin, E.F., and Ehrlich D., “Land-cover changes in sub-saharan Africa(1982-1991):application of change index based on remotely sensed surface temperature and vegetation indices at a continental scale”, Remote Singing Environment, Vol. 61, pp181-200, 1997.
39. Lillesand, T.M. and R.W. Kiefer, “Remote Sensing and Image Interpretation”,John Wiley & Sons Press, 2000.
40. Manale, A., “Flood and Water Quality Management through Targeted, Temporary Restoration of Landscape Functions: Paying Upland Farmers to Control Runoff”, Journal of Soil and Water Conservation, third quarter: pp. 285-295, 2000.
41. Mitsch, W.J., and J.K. Cronk, “Influence of Hydrologic Loading Rate on Phosphorus Retention and Ecosystem Productivity in Created Wetlands” U.S. Army Engineer Waterways Experiment Station, 1995.
42. Nelder, J.A. and R. MEAD, “A Simplex Method for Function Minimization”, Computer Journal, 7:pp. 308-313, 1965.
43. Nakamura, K., O. Miki, and Y. Shimatani, “Compact Wetland System for Urban Area in Japan” Symposium of Constructed Wetland Systems on Pollution Control: pp.17-25, 2001.
44. Poertner, H.G., “Practices in Detention of Urban Stormwater Runoff: An Investigation of Concepts” Techniques, Applications, Costs, Problems, Legislation, Legal Aspects And Opinions. American Public Works Association, Special Report No.43, 1974.
45. Rango, A., “Assessment of Remote Sensing Input to Hydrologic Model”, Water Resources Bulletin, 21(3): pp. 423-432, 1985.
46. Schultz, A.G., “Remote Sensing in Hydrology”, Journal of Hydrology, 100: pp. 239-265, 1988.
47. Singh, V.P.,“Computer models of watershed hydrology”, Water Resource Publications, Highlands Ranch, Colorado, U.S.A. , 1995.
48. Soil Conservation Service, “National Engineering Handbook, Part I –Watershed Planning in Hydrology” , 1964.
49. Swain, P.H., and S.M. Davis(eds.),“Remote Sensing: The Quantitative Approach”, McGraw-Hill, New York,1978.
50. US Army Corps of Engineers Hydrologic Engineering Center, “Hydrologic System Hec-HMS Technical Reference Manual” , 2000.