簡易檢索 / 詳目顯示

研究生: 吳怡凡
Wu, Timothy Alfred
論文名稱: 磁場作用下錫鉛合金方向性凝固之研究
Directional Solidification Analysis of Pb-Sn Alloy with Magnetic Effects
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 167
中文關鍵詞: 方向性凝固電磁凝固錫-鉛合金共晶系統金相學
外文關鍵詞: directional solidification, electromagnetic solidification, lead-tin (Pb-Sn) alloy, eutectic system, metallography
相關次數: 點閱:204下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 凝固為相當重要之材料製程技術,大多數之金屬材料必須先熔化成液體,再利用鑄造之方式做出成品或半成品。材料的微觀組織會在凝固過程,決定各項性質之優劣。因此如何由不同之工作條件,如環境溫度、溫度梯度、外加物理場等,來控制材料於凝固過程的微觀組織型態,強化材料的性質,故凝固學為重要的研究領域。
    方向性凝固,又稱定向凝固,對於金屬材料,就是人為地控制融熔金屬的結晶生長方向,以獲得結晶方向相近的柱狀晶,甚至單晶結構的凝固方法。電磁凝固是以電場或磁場控制凝固過程,為較新的研究領域。
    本研究以錫-鉛合金(Sn-10wt%Pb)為研究材料,錫-鉛合金系統是典型的共晶系統,共晶系統中,加入另一成分金屬,熔點會降低,液相線經過最低溫度點成為共晶點。
    本研究主要之研究方法有巨觀金相組織與微觀金相組織觀察,洛氏硬度試驗、截線法等。根據實驗結果,在磁場作用下凝固確實會影響材料的微結構。由硬度試驗的結果,可以證實方向性凝固之鑄件機械性質較傳統砂模鑄造的鑄件好。

    Of all the processing techniques used in manufacturing materials, solidification is probably the most important one. Solidification affects the morphology control of microstructures, which directly influence the mechanical and physical properties.
    The directional solidification process enables grain orientation to put in order along a specific direction. This process will decrease grain boundary (G.B.), which could improve mechanical properties of materials. The electromagnetic solidification process means the solidification process with the magnetic field or electric fields, and the electromagnetic solidification is a new research field.
    In our study of sand mold casting and directional solidification, lead-tin (Sn-90wt%Pb) alloy is used as the casting material. The lead-tin alloy is a classic eutectic system, in which the alloy of eutectic composition has the lowest melting temperature. To analyse the solidification processes, we used Rockwell hardness test with HRL scale, metallographic observation, including macrostructure, microstructure with optical microscope, and calculate grain size with linear intercept method.
    The casting process with a water-cooling copper chills, installed at the mold bottom, could induce the desired temperature gradient to make the casting grow directionally. According to the experimental results, hardnesses of directional solidification is higher than those of the sand-mold casting.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XV 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 5 1-2-1方向性凝固 5 1-2-2電磁凝固 8 第二章 凝固理論模式 17 2-1 凝固過程 17 2-1-1成核階段( Nucleation ) 19 2-1-1-1均質成核(Homogeneous Nucleation) 20 2-1-1-2異質成核(Heterogeneous Nucleation) 21 2-1-2 晶粒成長與侵犯階段(Growth and Impingement) 21 2-1-3晶粒構造形成與晶粒成長型態 22 2-2方向性凝固模式 24 2-3電磁凝固理論 26 2-3-1磁場的抑制對流作用 26 2-3-1-1普通鑄造 27 2-3-1-2方向性凝固 28 2-3-2熱電磁流體動力學效應 28 2-3-3抑制對流與熱電磁對流競爭 30 2-4鑄造技術 32 2-4-1鑄造技術的分類 32 2-4-2鑄造的優缺點 33 第三章 實驗設備與方法 48 3-1 實驗設備 48 3-1-1混砂造模設備 48 3-1-2鑄件外模 48 3-1-3永久磁鐵 49 3-1-4熔解爐 49 3-1-5方向性凝固載台與冷激端設備 49 3-1-6恆溫循環水槽 50 3-2 實驗模式 50 3-2-1 砂模鑄造之實驗模式 50 3-2-2 方向性凝固之實驗模式 51 3-2-2-1 實驗模式Case A 51 3-2-2-2 實驗模式Case B 52 3-2-2-3 實驗模式Case C 52 3-2-2-4 實驗模式Case D 53 3-2-2-5 實驗模式Case E 53 3-2-2-6 實驗模式Case F 54 3-2-2-7 實驗模式Case G 54 3-3材料分析 55 3-3-1 金相顯微組織觀察 55 3-3-1-1 金相觀察之實驗設備 55 3-3-1-2金相觀察之實驗步驟與方法 57 3-3-2 材料機械性質 59 3-3-3 實驗數據整理與計算 60 第四章 結果與討論 84 4-1 鑄造之缺陷 86 4-2 巨觀金相組織 87 4-3 微觀金相組織 91 4-4 晶粒尺寸 95 4-5 材料機械性質 96 第五章 結論與未來展望 160 5-1 結論 160 5-2 未來展望與建議 161 5-2-1方向性凝固 161 5-2-2電磁凝固 162 5-2-3鑄件形狀 162 參考文獻 164

    [1] D. Askeland, P. Fulay, and W. Wright, The science and engineering of materials: Cengage Learning, 2011.
    [2] W. Kurz and D. J. Fisher, Fundamentals of Solidification: Trans Tech Publications, Limited, 1989.
    [3] 李魁盛, "鑄造工藝設計基礎," 機械工業出版社, 1981.
    [4] 陸文華, 鑄鐵及其熔煉: 機械工業出版社, 1981.
    [5] W. F. Smith and J. Hashemi, Foundations of materials science and engineering: Mcgraw-Hill Publishing, 2006.
    [6] W. D. Callister and D. G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach: John Wiley & Sons, 2012.
    [7] R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles: SI Edition: Cengage Learning, 2010.
    [8] E. Hall, "The deformation and ageing of mild steel: III discussion of results," Proceedings of the Physical Society. Section B, vol. 64, p. 747, 1951.
    [9] N. J. Petch, "The Cleavage Strength of Polycrystals," J. Iron Steel Inst. London, pp. 25–28, 1953.
    [10] M. Rettenmayer and H. E. Exner, Directional Solidification Materials Science and Technology, 2001.
    [11] 範曉明, 金屬凝固理論與技術: 武漢理工大學出版社, 2012.
    [12] 孫延輝, "穩恒強磁場對Al-4.5%Cu合金定向凝固行為影響的研究," 2005.
    [13] 楊榮顯, "機械材料," 逢甲書局, pp404-415, 1986.
    [14] F. N. Rhines, Phase diagrams in metallurgy: their development and application: McGraw-Hill Companies, 1956.
    [15] 何廣福, "方向性凝固之研究," 成功大學工程科學系碩博士班學位論文, pp. 1-130, 2005.
    [16] 趙國傑, "凝固參數對於方向性成長之結構參數影響分析," 成功大學工程科學系碩博士班學位論文, pp. 1-179, 2007.
    [17] 吳俐潔, "以方向性凝固製備錫鉛合金之不同參數對其凝固結構之影響分析," 碩士, 工程科學系碩博士班, 國立成功大學, 台南市, 2013.
    [18] 壯. 胡. 周堯和, 介萬奇, 凝固技術: 機械工業出版社, 1998.
    [19] F. VerSnyder and R. Guard, "Directional grain structure for high temperature strength," Trans. ASM, vol. 52, p. 485, 1960.
    [20] F. Versnyder, R. Hehemann, and G. M. Ault, "High Temperature Materials," ed: Wiley-Interscience, New York, 1959.
    [21] H. Fisher and J. Walter, "Control of Crystal Orientation in Silicon-Iron Ingots," TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, vol. 224, pp. 1271-&, 1962.
    [22] J. L. Walter, "Method for casting and working grain oriented ingots," ed: Google Patents, 1960.
    [23] D .G. McCartney and a. J. D. Hunt, "Measurements of Cell and Primary Dendrite Arm Spacings in Directionally Solidified Aluminum Alloys," Acta Metallurgica, vol. 29, pp. 1851-1863, 1981.
    [24] C. M. Klaren , J. D. Verhoeven and R. Trivedi, "Primary Dendrite Spacing of Lead Dendrite in Pb-Sn and Pb-Au Alloys," Metallurgical Transcatons 11A, vol. 11, pp. 1853-1861, 1980.
    [25] O. L. Rocha, C. A. Siqueira, and A. Garcia, "Cellular spacings in unsteady-state directionally solidified Sn–Pb alloys," Materials Science and Engineering: A, vol. 361, pp. 111-118, 2003.
    [26] C. A. Siqueira, N. Cheung, and A. Garcia, "The columnar to equiaxed transition during solidification of Sn–Pb alloys," Journal of Alloys and Compounds, vol. 351, pp. 126-134, 2003.
    [27] J. E. Spinelli , I. L. Ferreira and A. Garcia,, "Influence of Melt Convection on the Columnar to Equiaxed Transition and Microstructure of Downward Unsteady-State Directionally Solidified Sn-Pb Alloys," Journal of Alloys and Compounds 384, vol. 384, pp. 217-226, 2004.
    [28] E. Cadirli and M. Gündüz, "The directional solidification of Pb-Sn alloys," Journal of materials science, vol. 35, pp. 3837-3848, 2000.
    [29] Fernando sa , Otavio Lima Rocha, Claudio Alves Siqueira and Amauri Garcia, "The Effect of Solidification Variables on Teriary Dendrite Arm Spacing in Unsteady-State Directional Solidification of Sn-Pb and Al-Cu Alloys," Materials Science Engineering A, vol. 373, pp. 131-138, 2004.
    [30] D. Uhlmann, T. SEWARD, and B. Chalmers, "The effect of magnetic fields on the structure of metal alloy castings," AIME MET SOC TRANS, vol. 236, pp. 527-531, 1966.
    [31] T. Kozuka, T. Yuhara, I. Muchi, and S. Asai, "Shape control of molten metal by electromagnetic force in a twin roll casting process," ISIJ International, vol. 29, pp. 1022-1030, 1989.
    [32] Y. Kishida, K. Takeda, I. Miyoshino, and E. Takeuchi, "Anisotropic effect of magnetohydrodynamics on metal solidification," 1990.
    [33] S. N. Tewari, R. Shah, and H. Song, "Effect of magnetic field on the microstructure and macrosegregation in directionally solidified Pb-Sn alloys," Metallurgical and materials transactions A, vol. 25, pp. 1535-1544, 1994.
    [34] M. Nakada, K. Mori, S.-I. Nishioka, K. Tsutsumi, H. Murakami, and Y. Tsuchida, "Reduction of macrosegregation by applying a DC magnetic field at the final stage of solidification," ISIJ international, vol. 37, pp. 358-364, 1997.
    [35] 劉晴, 肖荔, 時海芳, and 張偉強, "熱電磁流體動力學對Al-4.5Cu合金定向凝固組織的影響," 鑄造技術, vol. 23, p. 2, 2002.
    [36] 黃于軒, "應用磁場於熔融金屬流速控制之研究," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2000.
    [37] 林上瑜, "應用旋轉磁場於熔融金屬攪拌之研究," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2001.
    [38] 張家彰, "半固態電磁攪拌AZ91D鎂合金製程之研究," 碩士, 材料科學及工程學系碩博士班, 國立成功大學, 台南市, 2010.
    [39] 陳學民, "電磁場作用下薄鋼胚連鑄模內部流場分析之數值模擬研究," 碩士, 材料科學及工程學系, 國立成功大學, 台南市, 2014.
    [40] 林盈佐, "凝固顯微組織與模式分析," 國立成功大學工程科學所碩士論文, 1998.
    [41] 林樹均, 葉均蔚, 劉增豐, and 李聖隆, "材料工程實驗及原理," 初版, 全華科技圖書有限公司, pp. 111-122, 1990.
    [42] P. Jain, Principles of foundry technology: Tata McGraw-Hill Education, 2003.
    [43] B. Cantor and K. O'Reilly, Solidification and Casting: Taylor & Francis, 2002.
    [44] 蔡淑娟, 鑄造學名詞辭典: 名山, 1982.
    [45] E. P. DeGarmo, J. T. Black, and R. A. Kohser, Materials and Processes in Manufacturing: Wiley, 2002.
    [46] T. B. Massalski, H. Okamoto, P. Subramanian, and L. Kacprzak, Binary alloy phase diagrams: ASM international, 1990.
    [47] D. A. Porter, K. E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys, Third Edition (Revised Reprint): Taylor & Francis, 2009.
    [48] A. S. f. Metals, Liquid metals and solidification: a seminar on liquid metals and solidification held during the thirty-ninth National Metal Congress and Exposition, Chicago, November 2 to 8, 1957: American Society for Metals, 1958.
    [49] W. Losert, B. Shi, and H. Cummins, "Evolution of dendritic patterns during alloy solidification: Onset of the initial instability," Proceedings of the National Academy of Sciences, vol. 95, pp. 431-438, 1998.
    [50] 屈淑維, "穩恒磁場及直流電場對鋁硅合金凝固過程及組織性能的影響研究," 碩士, 中北大学, 2009.
    [51] 王巖, "樹枝晶前沿熱電磁流體動力學效應的研究," 碩士, 遼寧工程技術大學, 2009.
    [52] D. J. Griffiths, Introduction to Electrodynamics: Pearson, 2013.
    [53] 張偉強, "金屬電磁凝固原理與技術• JtV," ed: 冶金工業出版社.
    [54] I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, and L. Buligins, "Thermoelectric current and magnetic field interaction influence on the structure of directionally solidified Sn–10wt.% Pb alloy," Journal of Alloys and Compounds, vol. 571, pp. 50-55, 2013.
    [55] R. Moreau, O. Laskar, M. Tanaka, and D. Camel, "Thermoelectric magnetohydrodynamic effects on solidification of metallic alloys in the dendritic regime," Materials Science and Engineering: A, vol. 173, pp. 93-100, 12/20/ 1993.
    [56] D. M. Rowe, CRC Handbook of Thermoelectrics: Taylor & Francis, 1995.
    [57] O. Laskar, "Phénomènes thermoélectriques et magnétohydrodynamiques en solidification des alliages métalliques," Ph.D, Institut National Polytechnique de Grenoble, 1994.
    [58] P. Lehmann, R. Moreau, D. Camel, and R. Bolcato, "Modification of interdendritic convection in directional solidification by a uniform magnetic field," Acta Materialia, vol. 46, pp. 4067-4079, 7/1/ 1998.
    [59] B. Li, "Solidification processing of materials in magnetic fields," JOM-e, vol. 50, pp. 1-10, 1998.
    [60] 任忠鳴, "強磁場下金屬凝固研究進展," 中國材料進展, vol. 29, 2010.
    [61] 倪明玖, "磁約束核聚變反應堆研發相關的金屬流體力學問題研究," 中國科學: 物理學, 力學, 天文學, pp. 1570-1578, 2013.
    [62] S. J. A., "Steady motion of conducting fluids in pipes under transverse magnetic fields," Proc Cambridge Philosophical Soci, 1953.
    [63] D. Stefanescu, Science and Engineering of Casting Solidification, Second Edition: Springer, 2008.
    [64] 韋孟育, 材料實驗方法-金相分析技術: 全華科技圖書股份有限公司, 1990.
    [65] J. S. Basi, "Silicon wafer polishing," ed: Google Patents, 1977.
    [66] 包. E, 柴海威拉阿南, 查澤爾阿蒙, "一種黏結矽部件專用的矽和氧化矽複合黏結劑," ed: Google Patents, 2006.
    [67] A. Standard, "E18, Standard test methods for Rockwell hardness of metallic materials," ASTM International, West Conshohocken, PA, 2008.
    [68] N. N. Taha, "鋁合金鑄造凝固過程中之微縮孔(Mirco-porosity)缺陷預測," CAE (CFD) 技術, 2011.
    [69] 國家機械工業委員會, 金相組織基礎知識: 機械工業出版社, 1988.
    [70] R. M. Brick, Metal Interfaces: A Seminar on Metal Interfaces Held During the 33. National Metal Congress and Exposition, Detroit, Oct. 13-19, 1951: American Soc. for Metals, 1952.

    下載圖示 校內:2020-08-24公開
    校外:2020-08-24公開
    QR CODE