| 研究生: |
陳昭宏 Chen, Zhao-Hong |
|---|---|
| 論文名稱: |
適用於具有電壓頻率調整多核心系統之熱感知的電子系統層級虛擬平台 Thermal-Aware ESL Virtual Platform for Multi-Processor Systems with Voltage and Frequency Scaling |
| 指導教授: |
邱瀝毅
Chiou, Lih-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 多核心系統 、電子系統層級 、熱感知虛擬平台 、功率與熱管理 |
| 外文關鍵詞: | Multi-core system, Electric system level, Thermal-aware virtual platform, Power and thermal management |
| 相關次數: | 點閱:193 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
日益流行的多核心系統可以有效改善系統之效能,而這樣複雜的系統設計方式卻也讓設計時間、驗證與除錯困難度明顯增加。近年來,電子系統層級設計被提出,並引入虛擬平台的概念。虛擬平台可以幫助系統設計人員在早期設計階段進行軟硬體共同設計、共同模擬、共同驗證等好處,藉此降低設計複雜度所帶來的障礙。然而,在最近幾年內,多核心系統中的處理器數目不斷增加,進而導致功率消耗過大與系統溫度過高等問題。
本論文提出一具熱感知的虛擬平台,而此平台是以電子系統層級概念建置而成。除了支援多核心系統架構的效能分析外,並加入功率分析、溫度分析等考量。因此得以在系統層級階段提早考量該系統之功率消耗與溫度分布的情況。此外該平台還支援功率與熱管理機制,藉此得以進一步發展完備的功率與熱管理演算法。
The increasingly popular multi-processor system can improve system performance, the design complexity of such a system in design time and verification/debugging also increase significantly. The electronic system level design, proposed in recent years, introduces the concept of the virtual platform. The virtual platform can help system designers to perform hardware/software co-design, co-simulation and co-verification at early design phases to reduce the barriers of complexity. However, the number of processors inside the multi-processor system in recent years rises quickly and results in excessive power consumption and thermal issues.
In this thesis, we proposed a thermal-aware virtual platform for multi-processor systems based on the concept of electronic system level. Therefore, power consumption and temperature distribution can be considered at system level at early stage. Moreover, the platform also can support power and thermal management mechanism for further development.
[1] W. Wolf, A. A. Jerraya and G. Martin, "Multiprocessor System-on-Chip (MPSoC) technology," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 10, pp. 1701-1713, Oct. 2008.
[2] A. P. Su and R. Chen, "Applying ESL in a dual-core SoC platform designing," in Proc. IEEE International SoC Conference (SoCC), 2006, pp. 171-174.
[3] D. Araki, A. Nakamura, and M. Miyama, "Model-based SoC design using ESL environment," in Proc. International SoC Design Conference (ISOCC), 2010, pp. 83-86.
[4] T.-C. Yeh, Z.-Y. Lin and M.-C. Chiang, "Optimizing the simulation speed of QEMU and systemC-based virtual platform," in Proc. International Conference on Information Engineering and Computer Science (ICIECS), 2010, pp. 1-4.
[5] A. Gupta, S. Pasricha, N. Dutt, F. Kurdahi, K. Khouri and M. Abadir, "On chip communication-architecture based thermal management for SoCs," in Proc. International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2009, pp. 76-79.
[6] M. Pedram and S. Nazarin, “Thermal modeling, analysis, and management in VLSI circuits: principles and methods,” in Proc. IEEE, vol. 94, no. 8, pp. 1487-1501, Aug. 2006.
[7] Panasonic, Failure mechanism of semiconductor devices, Apr. 2009.
[8] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, and V. Narayanan, "Leakage current: Moore's law meets static power," Computer, vol. 36, no. 12, pp. 68-75, 2003.
[9] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan. “Hotleakage: a temperature-aware model of subthreshold and gate leakage for architects,” University of Virginia Dept. of Computer Science Technical Report, 2003.
[10] IDC. (2009). Beyond organisational boundaries: answering the enterprise computing challenge. [Online]. Available: http://uk.idc.com
[11] C. Ravishankar, S. Ananthanarayanan, S. Garg, and A. Kennings, "Analysis and evaluation of greedy thread swapping based dynamic power management for MPSoC platforms," in Proc. International Symposium on Quality Electronic Design (ISQED), 2012, pp. 617-624.
[12] J. S. Lee, k. Skadron, and S. W. Chung, "Predictive temperature-Aware DVFS," IEEE Trans. Computers, vol. 59, no. 1, pp. 127-133, Jan. 2010.
[13] K. Kang, J. Kim, S. Yoo, and C.-M. Kyung, "Temperature-aware integrated DVFS and power gating for executing tasks with runtime distribution," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 9, pp. 1381-1394, Sep. 2010.
[14] S. Jairam, M. Rao, J. Srinivas, P. Vishwanath, H. Udayakumar, and J. Rao, "Clock gating for power optimization in ASIC design cycle theory & practice," in Proc. International Symposium on Low Power Electronics and Design (ISLPED), 2008, pp. 307-308.
[15] R. Cochran and S. Reda, "Consistent runtime thermal prediction and control through workload phase detection," in Proc. ACM/IEEE Design Automation Conference (DAC), 2010, pp. 62-67.
[16] Y. Ge, P. Malani and Q. Qiu, "Distributed task migration for thermal management in many-core systems," in Proc. ACM/IEEE Design Automation Conference (DAC), 2010, pp. 579-584.
[17] X. Zhou, J. Yang, Y. Xu, Y. Zhang and J. Zhao, "Thermal-aware task scheduling for 3D multicore processors," IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 1, pp. 60-71, Jan. 2010.
[18] F. Zhaoguo, S. Chaoshan, and L. Zuying, "An task scheduling algorithm of real-time leakage power and temperature optimization for MPSoC," in Proc. IEEE International Conference on Computer-Aided Design and Computer Graphics, 2009, pp. 478-483.
[19] A. Kumar, Li Shang, L.-S. Peh and N. K. Jha, “System-level dynamic thermal management for high-performance microprocessors,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 1, pp. 96-108, Jan. 2008.
[20] O. Khan and S. Kundu, "Hardware/software co-design architecture for thermal management of chip multiprocessors," in Proc. Design, Automation and Test in Europe Conference and Exhibition (DATE), 2009, pp. 952-9575
[21] M. R. Stan, K. Skadron, M. Barcella, W. Huang, K. Sankaranarayanan and S. Velusamy, “HotSpot: a dynamic compact thermal model at the processor-architecture level,” Microelectronics Journal, vol. 34, no. 12, pp. 1153-1165, 2003.
[22] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh and S. Velusamy, “Compact thermal modeling for temperature-aware design,” in Proc. ACM/IEEE Design Automation Conference (DAC), 2004, pp. 878-883.
[23] L. Cai and D. Gajski, "Transaction level modeling: an overview," in Proc. IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2003, pp. 19-24.
[24] OSCI. (2001). An Introduction to System Level Modeling in SystemC 2.0. [Online]. Available: http://www.systemc.org
[25] M. Barnasconi. (2008). SystemC Analog & Mixed Signal Extensions: What's It All About? [Online]. Available: http://www.systemc.org
[26] Z.-M. Hsu, I-Y. Chuang, W.-C. Su, J.-C. Yeh, J.-K. Yang and S.-Y. Tseng, “System performance analyses on PAC Duo ESL virtual platform,” in Proc. Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2009, pp. 406-409.
[27] I-Y. Chuang, C.-W. Chang, T.-Y. Fan, J.-C. Yeh, K.-M. Ji, J.-L. Ma, A.-Y. Wu and S.-Y. Lin, “PAC Duo SoC performance analysis with ESL design methodology,” in Proc. IEEE 8th International Conference on ASIC, 2009, pp. 399-402.
[28] C.-W. Hsu, J.-L. Liao, J.-C. Yeh, J.-J. Chen, S.-Y. Huang, and J.-J. Liou, "Memory-aware power modeling for PAC DSP core," in Proc. Asia Symposium on Quality Electronic Design (ASQED), 2009, pp. 319-324.
[29] W.-T. Hsieh, J.-C. Yeh and S.-Y. Huang, “PAC Duo system power estimation at ESL,” in Proc. Asia and South Pacific Design Automation Conference (ASP-DAC), 2010, pp. 815-820.
[30] W.-T. Hsieh, J.-C. Yeh, S.-C. Lin, H.-C. Liu, and Y.-S. Chen, “System power analysis with DVFS on ESL virtual platform,” in Proc. IEEE International SoC Conference (SOCC), 2011, pp. 93-98.
[31] D. Atienza, P. G. Del Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli, and J. M. Mendias, “A fast HW/SW FPGA-based thermal emulation framework for multiprocessor system-on-chip,” in Proc. ACM/IEEE Design Automation Conference (DAC), 2006, pp. 618–623.
[32] D. Atienza, “Emulation-based transient thermal modeling of 2D/3D Systems-on-Chip with active cooling,” in Proc. International Workshop on Thermal Investigations of ICs and Systems, 2009, pp. 714-717.
[33] ARM. ARM architecture reference manual. 2000
[34] Grantronics Pty Ltd. (2009). MCS-51? Instruction Set Summary. [Online]. Available: http://www.grantronics.com.au
[35] ARM. (2009). μVisionR IDE & Debugger. [Online]. Available: http://www.keil.com/uvision/
[36] N. Bansal, K. Lahiri, A. Raghunathan, and S. T. Chakradhar, "Power monitors: a framework for system-level power estimation using heterogeneous power models," in Proc. International Conference on VLSI Design (VLSID), 2005, pp. 579-585.
[37] P. E. Weng, "Architecture-aware instruction-based power model considering voltage and frequency scaling for ESL virtual platforms," M.S. dissertation, Department of Electrical Engineering, National Cheng-Jung University, Tainan, Taiwan, July. 2012.
[38] Y. S. Xiao, "A heterogeneous virtual platform for thermal ans power manageable systems using voltage and frequency scaling," M.S. dissertation, Department of Electrical Engineering, National Cheng-Jung University, Tainan, Taiwan, July. 2012.
[39] Texas Instruments, Adaptive voltage scaling technology, 2011.
校內:2018-09-11公開