| 研究生: |
黃怡瑄 Huang, Yi-Shuan |
|---|---|
| 論文名稱: |
混合離岸式風場連接高壓直流傳輸系統之功率潮流控制及穩定度分析 Power Flow Control and Stability Analysis of a High-Voltage Direct-Current Link Connected to Hybrid Offshore Wind Farms |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 離岸式風場 、高壓直流傳輸系統 、功率潮流控制 、穩定度 |
| 外文關鍵詞: | Offshore wind farms (OWFs), high-voltage direct current (HVDC) link, power flow control, stability |
| 相關次數: | 點閱:86 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係針對以雙饋式感應發電機為主之離岸式風場與永磁式同步發電機為主之離岸式風場整合後,經由高壓直流傳輸系統並聯至市電之架構為研究目標,並比較此類混合離岸式風場採用高壓直流傳輸系統進行功率潮流控制以及穩定度改善之影響。本論文於三相平衡系統下利用交直軸等效電路模型,分別建立雙饋式感應發電機為主之離岸式風場、永磁式同步發電機為主之離岸式風場以及電壓源型之高壓直流傳輸系統等模型,並利用極點安置法設計高壓直流傳輸系統之比例-積分-微分阻尼控制器。本論文於穩態特性方面,分析風速及電網電壓變動等情況下對系統穩定度特性之影響。在暫態及動態模擬方面,完成了風速變動、轉矩干擾以及市電端發生三相短路故障等模擬結果。由穩態、動態及暫態之模擬結果分析得知,高壓直流傳輸系統能夠有效地控制混合離岸式風場並聯市電之功率潮流以及改善該風場系統於不同干擾下之穩定度。
This thesis presents the analyzed results of power-flow control and stability improvement of an integrated doubly-fed induction generator (DFIG)-based offshore wind farm (OWF) and permanent-magnet synchronous generator (PMSG)-based OWF connected to a large utility grid through a high-voltage direct-current (HVDC) link. The q-d axis equivalent-circuit model is used to establish the models of the studied DFIG-based OWF, the PMSG-based OWF, and the HVDC link under three-phase balanced loading conditions. A proportional-integral- derivative (PID) damping controller of the HVDC link is designed by using a pole-assignment approach based on modal control theory. Steady-state characteristics of the studied system under different values of wind speed and grid voltage are examined. Dynamic results and transient simulations of the studied system subject to a wind-speed disturbance, a torque disturbance, and a three-phase fault at the power grid are also carried out. It can be concluded from the simulation results that the proposed HVDC link joined with the designed damping controller are very effective to control the power flow and improve the stability of the studied integrated OWF systems.
[1] 行政院環保署。http://www.epa.gov.tw/, retrieved date: June 5, 2011.
[2] 余勝雄,我國風力發電現況與展望,永續產業發展雙月刊,第35期,2007年10月。
[3] 百度文庫。http://wenku.baidu.com/, retrieve date: June 7, 2011.
[4] ABB公司。http://www.abb.com/, retrieve date: June 11, 2011。
[5] 呂威賢,從風車到風力機,科學發展月刊,第383期,2004年11月。
[6] 經濟部能源局。http://www.moeaboe.gov.tw/, retrieve date: May 23, 2011.
[7] J. G. Slootweg and W. L. Kling, “Aggregated modeling of wind parks in power system,” in Proc. IEEE Power Tech conference, June 23-26, 2003.
[8] P. Ledesma and J. Usaola, “Doubly fed induction generator model for transient stability analysis,” IEEE Trans. Energy Conversion, vol. 20, no. 2, pp. 388-397, June 2005.
[9] M. Kayikci and J. V. Milanovic, “Reactive power control strategies for DFIG-based plants,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 389-396, June 2007.
[10] R. G. de Almeida and J. A. P. Lopes, “Participation of doubly fed induction wind generators in system frequency regulation,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 944-950, August 2007.
[11] F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission, and Distribution, vol. 1, no. 5, pp. 751-760, September 2007.
[12] R. Bharanikumar, V. Kandasamy, M. P. Maheswari, and A. N. Kumar, “Steady state analysis of wind turbine driven PM generator with power converters,” in Proc. 2008 International Emerging Trends in Engineering and Technology Conference, Nagpur, Maharashtra, pp. 922-926, July 18-19, 2008.
[13] S. M. Muyeen, R. Takahashi, T. Murata, and J. Tamura, “A variable speed wind turbine control strategy to meet wind farm grid code requirements,” IEEE Trans. Power Systems, vol. 25, no. 1, pp. 331-340, February 2010.
[14] L. Wang and G. Z. Zheng, “Analysis of a microturbine generator system connected to a distribution system through power-electronics converters,” IEEE Trans. Sustainable Energy, vol. 2, no. 2, pp. 159-166, April 2011.
[15] M. Singh, V. Khadkikar, and A. Chandra, “Grid synchronisation with harmonics and reactive power compensation capability of a permanent magnet synchronous generator-based variable speed wind energy conversion system,” IET Power Electronics, vol. 4, no. 1, pp. 122-130, November 2011.
[16] K. R. Padiyar and N. Prabhu, “Modelling control design and analysis of VSC based HVDC transmission systems,” in Proc. 2004 Power System Technology International Conference, November 21-24, 2004, Singapore.
[17] X. I. Koutiva, T. D. Vrionis, N. A. Vovos, and G. B. Giannakopoulos, “Optimal integration of an offshore wind farm to a weak AC grid,” IEEE Trans. Power Delivery, vol. 21, no. 2, pp. 987-994, April 2006.
[18] L. Xu, L. Yao, and C. Sasse, “Grid integration of large DFIG-based wind farms using VSC transmission,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 976-984, August 2007.
[19] C. Feltes, H. Wrede, F. W. Koch, and I. Erlich, “Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission,” IEEE Trans. Power Systems, vol. 24, no. 3, pp. 1537-1546, August 2009.
[20] N. Prabhua and K. P. Padiyar, “Investigation of subsynchronous resonance with VSC-based HVDC transmission systems,” IEEE Trans. Power Delivery, vol. 24, no. 1, pp. 433-440, January 2009.
[21] C. Du, E. Agneholm, and G. Olsson, “VSC-HVDC system for industrial plants with onsite generators,” IEEE Trans. Power Delivery, vol. 24, no. 3, pp. 1359-1366, July 2009.
[22] S. M. Muyeen, R. Takahashi, and J. Tamura, “Operation and control of HVDC-connected offshore wind farm,” IEEE Trans. Sustainable Energy, vol. 1, no. 1, pp. 30-37, April 2010.
[23] M. E. Montilla-DJesus, D. Santos-Martin, S. Arnaltes, and E. D. Castronuovo, “Optimal operation of offshore wind farms with line-commutated HVDC link connection,” IEEE Trans. Power Systems, vol. 25, no. 2, pp. 504-513, June 2010.
[24] X. Chen, H. Sun, J. Wen, W. J. Lee, X. Yuan, N. Li, and L. Yao, “Integrating wind farm to the grid using hybrid multiterminal HVDC technology,” IEEE Trans. Industry Applications, vol. 47, no. 2, pp. 965-972, March/April 2011.
[25] H. Zhou, G. Yang, J. Wang, and H. Geng, “Control of a hybrid high-voltage DC connection for large doubly fed induction generator-based wind farms,” IET Renewable Power Generation, vol. 5, no. 1, pp. 36-47, June 2011.
[26] L. Xu and L. Yao, “DC voltage control and power dispatch of a multi-terminal HVDC system for integrating large offshore wind farms,” IET Renewable Power Generation, vol. 5, no. 3, pp. 223-233, October 2011.
[27] P.M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. 102, no. 12, December 1983, pp.3791-3795.
[28] 盧志榮,飛輪儲能系統於風力發電系統之功率潮流控制及穩定度分析研究,國立成功大學電機工程學系碩士論文,2008年6月。
[29] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 2001.
[30] 林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分析,國立成功大學電機工程學系碩士論文,2006年6月。
[31] Y. H. A. Rahim and A. M. L. Al-Sabbagh, “Controlled power transfer from wind driven reluctance generator,” IEEE Trans. Energy Conversion, vol. 12, no. 4, pp. 275-281, December 1997.
[32] S. M. Muyeen, J. Tamura, and T. Murata, Stability Augmentation of a Grid-connected Wind Farm, New York: Springer, 2009.
[33] 詹昇融,整合離岸式風場與沿岸波浪場之功率潮流控制及穩定度分析,國立成功大學電機工程學系碩士論文,2010年7月。
[34] 吳綜瑞,高壓直流傳輸系統連接於電力系統之功率潮流控制與穩定度分析,國立成功大學電機工程學系碩士論文,2010年7月。
[35] 台灣電力公司。http://www.taipower.com.tw/, retrieve date: June 15, 2011.