| 研究生: |
葉宏建 Yeh, Hong-Jian |
|---|---|
| 論文名稱: |
氟化鋰薄膜在五環素有機薄膜電晶體之影響 The Effect of An Ultra-thin Lithium Fluoride Film on Pentacene-Based Organic Thin Film Transistors |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 有機電激發光二極體 、有機薄膜電晶體 、伍環素 、銦錫氧化物 、共軛高分子 |
| 外文關鍵詞: | ITO, PDPA, PDDA, PVP, SiO2, conjugated polymer, organic light emitting diode, LiF, pentacene, organic thin film transistor |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中我們所製作與研究之有機薄膜電晶體包含兩部份,分別各是以有機高分子poly-diallyldimethylammonium chloride (PDDA) 及Poly-diphenylamine (PDPA) 與小分子五環素 (pentacene) 作為其主動層,以往二氧化矽常見被作為介電層,在此我們將介電層也改用有機材料poly(4-vinylphenol),銦錫氧化物 (ITO) 因導電性佳及其為透明之特性,故選用作為閘極電極。
第一部份因為五環素是現今作為有機薄膜電晶體特性最穩定的小分子材料,另外,超薄的氟化鋰薄膜被使用在有機電激發光二極體之中以改善載子注入的效率,在此我們將之成膜應用於閘極電極與介電層之間,當氟化鋰薄膜為5奈米時發現電流開關比 (106) 有相當明顯的改進;我們以電晶體移除主動層的結構來製作電容器以瞭解鋰化氟厚度對電容值的影響,其電容值的變化趨勢相似於五環素薄膜電晶體”開”、”關”狀態的汲極電流及開關電流比。
第二部份,我們利用PDDA藉由閘極偏壓來控制PDPA被離子摻雜與否的機制研製雙層主動層式的共軛高分子有機薄膜電晶體。
Organic thin film transistors based on conjugated polymer such as poly-diallyldimethylammonium chloride (PDDA) / Poly-diphenylamine (PDPA) and small molecule such as pentacene. Poly(4-vinylphenol) are investigated as a dielectric material instead of SiO2. ITO glass as gate electrodes due to its conductivity as well as transparent properties is applied to the transistor fabrication.
Until now, the performance of pentacene-based organic thin film transistors is the most widely studied. A lithium fluoride (LiF) thin film has been used in organic light emitting diodes to improve the efficiency of the carrier injection. Here, we deposit an ultra-thin LiF film between gate electrode and dielectric layer in pentacene-based OTFTs. The on/off current ratio (up to 106) is obviously improved as thickness of the LiF film is approximately 5.0 nm. The mechanisms are also studied. By removing the active layer from pentacene-based OTFTs to fabricate capacitors, the capacitance trend is similar to the drain current at on-state and off-state regions as well as on/off current ratio.
In the second part, anions of PDDA can be doped into PDPA through applying a negative bias in order to modulate the conductivity of PDPA. As a result of this mechanism, the PDPA/PDDA bilayer is employed as an active semiconductor layer to demonstrate conjugated polymer OTFTs.
[1] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene / polysiloxane interface,” Journal of Applied Physics, vol. 54, p. 3255 (1983)
[2] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin-film,” Applied Physics Letters, vol. 49, p.1210 (1986)
[3] A. Assadi, C. Svensson, M. Willander, and O. Inganas, “Field-effect mobility of poly(3-hexylthiophene),” Applied Physics Letters, vol. 53, p. 195 (1988)
[4] J. H. Burroughes, C. A. Jones, and R. H. Friend, “New semiconductor device physics in polymer diodes and transistors,” Nature, vol. 335, p. 137 (1988)
[5] C. Clarisse, M. T. Riou, M. Gauneau, and M. Le Contellec, “Field-effect transistor with diphthalocyanine thin-film,” Electronics Letters, vol. 24, p. 674 (1988)
[6] G. Horowitz, D. Fichou, X. Peng, Z. Xu, and F. Garnier, “A field-effect transistor based on conjugated alpha-sexithienyl,” Solid State Communications, vol. 72, p. 381 (1989)
[7] A. Dodabalapur, L. Torsi, and H. E. Katz, “Organic transistors: Tow-dimensional transport and improved electrical characteristics,” Science, vol. 268, p. 270 (1995)
[8] G. Horowitz, X. Z. Peng, D. Fichou, and F Garnier, “Organic thin-film transistors using π-conjugated oligomers: Influence of the chain length,” Journal of Molecular Electronics, vol. 7, p. 85 (1991)
[9] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, “Pentacene organic thin-film transistors-molecular ordering and mobility,” IEEE Electronics Device Letters, vol. 18, p. 87 (1997)
[10] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Pentacene-based organic thin-film transistors,” IEEE Electronics Device Letters, vol. 44, p. 1325 (1997)
[11] C. D. Dimitrakopoulos and D. J. Mascaro, “Organic thin film transistor: A review of recent advances,” IBM J. Res. Develop., vol. 45, pp. 11-27 (2001)
[12] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, “C60 thin-film transistors,” Applied Physics Letters, vol. 67, p. 121 (1995)
[13] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, “n-Channel organic transistor materials based on naphthalene frameworks,” Journal of the American Chemical Society, vol. 118, p. 11331 (1996)
[14] H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin ,and A. Dodabalapur, “A soluble and air-stable organic semiconductor with high electron mobility,” Nature, vol. 404, p.478 (2000)
[15] H. E. Katz, J. Johnson, A. J. Lovinger, and W. Li, “Naphthalenetetracarboxylic diimide-based n-channel transistor semiconductors: Structural variation and thiol-enhanced gold contacts,” Journal of the American Chemical Society, vol. 122, p. 7787 (2000)
[16] P. P. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarloxylic diimide derivative,” Applied Physics Letters, vol. 80, p. 2517 (2002)
[17] Z. Bao, A. Lovinger, and J. Brown, “New air-stable n-channel organic thin-film transistors,” Journal of the American Chemical Society, vol. 120, p. 207 (1998)
[18] J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V.Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proceedings of the National Academy of Sciences, vol. 98, pp. 4835 (2001)
[19] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, and T. N. Jackson, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Applied Physics Letters, vol. 80 , p. 1088 (2002)
[20] Z. T. Zhu, J. T. Mason, R. Dieckmann, and G. G. Malliaras, “Humidity sensors based on pentacene thin-film transistors,” Applied Physics Letters, vol. 81, p. 4643 (2002)
[21] B. K. Crone, A. Dodabalapur, R. Sarpeshkar, A. Gelperin, H. E. Katz, and Z. Bao, “Organic oscillator and adaptive amplifier circuits for chemical vapor sensing,” Journal of Applied Physics, vol. 91, p. 10140 (2002)
[22] X. L. Chen, Z. Bao, J. H. Schon, A. J. Lovinger, Y. Y. Lin, B. Crone, A. Dodabalapur, “Ion-modulated ambipolar electrical conduction in thin-film transistors based on amorphous conjugated polymers,” Applied Physics Letters, vol. 78, pp. 228-230 (2001)
[23] F. Zhu, X. T. Hao, O. K. Soo, Y. Li, and L. W. Tan, “Polymer electronics systems-polytronics,” Proceedings of the IEEE, vol 93, no. 8, p. 1400 (2005)
[24] J. M. Shaw, and P. F. Seidler, “Organic electronics: Introduction,” IBM J. Res. Develop., vol. 45, p. 3 (2001)
[25] J. Zhang, J. Wang, H. Wang, and D. Yan, “Organic thin-film transistors in sandwich configuration,” Applied Physics Letters, vol. 84, pp. 142-144 (2004)
[26] U. Zschieschang, H. Klauk, M. Halik, G. Schmid, and C. Dehm, “Flexible Organic Circuits with Printed Gate Electrodes,” Advanced Materials, vol. 15, pp. 1147-1151 (2003)
[27] G. Horowitz, “Organic field-effect transistors,” Advanced Materials, vol. 10, pp. 365-377 (1998)
[28] G. Horowitz, and M. E. Hajlaoui, “Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size,” Advanced Materials, vol. 12, pp. 1046-1050 (2000)
[29] Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility,” Applied Physics Letters, vol. 69, p. 4108 (1996)
[30] L. Bürgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, “Close look at charge carrier injection in polymer field-effect transistors,” Journal of Applied Physics, vol. 94, p. 6129 (2003)
[31] S. J. Kang, M. Noh, D. S. Park, H. J. Kim, C. N. Whang, and C.-H. Chang, “Influence of postannealing on polycrystalline pentacene thin film transistor,” Journal of Applied Physics, vol. 95, p. 2293 (2004)
[32] J. Lee, J. H. Kim, and S. Im, “Effects of substrate temperature on the device properties of pentacene-based thin film transistors using Al2O3+xgate dielectric,” Journal of Applied Physics, vol. 95, p. 3733 (2004)
[33] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors,” Journal of Applied Physics, vol. 92, p. 5259 (2002)
[34] S. H. Jin, C. A. Lee, K. D. Jung, H. Shin, B. G. Park, and J. D. Lee, “Performance improvement of scaled-down top-contact OTFTs by two-step-deposition of pentacene,” IEEE Electron Device Letters, vol. 26, p. 903 (2005)
[35] C. Adachi, K. Nagai, and N. Tamoto, “Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes,” Applied Physics Letters, vol. 66, pp. 2679-2681 (1995)
[36] C. Giebeler, H. Antoniadis, D. D. C. Bradley, and Y. Shirota, “Influence of the hole transport layer on the performance of organic light-emitting diodes,” Journal of Applied Physics, vol. 85, pp. 608-615 (1999)
[37] F. M. Gray, Solid Polymer Electrolytes: Fundamentals and Technological Applications (VCH Publications, New York, 1991)
[38] S. Chao, and M. S. Wrighton, “Solid-state microelectrochemistry: electrical characteristics of a solid-state microelectrochemical transistor based on poly(3-methylthiophene),” Journal of the American Chemical Society,vol. 109, pp. 2197-2199 (1987)
[39] H. Benisty, and J. N. Chazalviel, “Electrochemical field effect as a probe of double-layer dynamics,” Journal of The Electrochemical Society, vol. 140, pp. 1949-1955 (1993)
[40] C. Lu, Q. Fu, S. Huang, and J. Liu, “Polymer Electrolyte-Gated Carbon Nanotube Field-Effect Transistor,” Nano Letters, vol. 4, pp. 623-627 (2004)
[41] G. P. Siddons, D. Merchin, J. H. Back, J. K. Jeong, and M. Shim, “Highly Efficient Gating and Doping of Carbon Nanotubes with Polymer Electrolytes,” Nano Letters, vol. 4, pp. 927-931 (2004)
[42] M. J. Panzer, C. R. Newman, and C. D. Frisbie, “Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric,”Applied Physics Letters, vol. 86, p. 103503 (2005)
[43] Y. J. Lin, Y. C. Li, C. C. Yeh, S. F. Chung, L. M. Huang, T. C. Wen, and Y. H. Wang, “Organic thin film transistor by using polymer electrolyte to modulate the conductivity of conjugated polymer,” Applied Physics Letters, vol. 89, p. 223518-1 (2006)
[44] F. Garnier, R. Hajlaoui, and M. El Kassmi, “Vertical device architecture by molding of organic-based thin film transistors,” Applied Physics Letters,vol. 73, p. 1721 (1998)
[45] K. Kudo, K. Shimada, K. Marugami, M. Iizuka, S. Kuniyoshi, and K. Tanaka, “Organic static induction transistor for color sensors,” Synthetic Metals, vol. 102, p. 900 (1999)
[46] K. Kudo, M. Iizuka, S. Kuniyoshi, and K. Tanaka, “Device characteristics of lateral and vertical type organic field effect transistors,” Thin Solid Films, vol. 393, p. 362 (2001)
[47] M. J. Powell, “The physics of amorphous-silicon thin film transistors,” IEEE Transactions on Electron Devices, vol. 36, p. 2753 (1989)
[48] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw, “Low-cost all-polymer integrated circuits,” Applied Physics Letters, vol. 73, p. 108 (1998)
[49] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasedaran, W. Wu, and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, pp. 2123-2126 (2000)
[50] W. Fix, A. Ullmann, J. Ficker, andW. Clemens, “Fast polymer integrated circuits,” Applied Physics Letters, vol. 81, p. 1735 (2002)
[51] Z. Bao , “Materials and Fabrication Needs for Low-Cost Organic Transistor Circuits,” Advanced Materials, vol. 12, p. 227 (2000)
[52] B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, “Large-scale complementary integrated circuits based on organic transistors,” Nature, vol. 403, pp. 521-523 (2000)
[53] H. Sirringhaus, R. J. Wilson, R. H. Friend, M.Inbasekaran, W. Wu, E. P. Woo, M. Grell, and D. D. C. Bradley, “Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase,” Applied Physics Letters, vol. 77, p. 406 (2000)
[54] T. Minari, T. Nemoto, and S. Isoda, “Temperature and electric-field dependence of the mobility of a single-grain pentacene field-effect transistor,” Journal of Applied Physics, vol. 99, p. 034506-1 (2006)
[55] G. Horwitz, “Organic field-effect transistors,” Advanced Materials, vol. 10, p. 365 (1998)
[56] M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors,” Applied Physics Letters, vol. 81, p. 268 (2002)
[57] T. W. Kelley, and C. D. Frisbie, “Gate voltage dependent resistance of a single organic semiconductor grain boundary,” Journal of Physical Chemistry B, vol. 105, p. 4538 (2001)
[58] G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, “Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors,” Journal of Applied Physics, vol. 87, p. 4456 (2000)
[59] Donald A. Neamen, “Semiconductor physics and devices basic principles 3rd,”, McGRAW.HILL, chap. 11, sect. 11.1.1, pp. 450-453 (2003)
[60] D. Gamota, P. Braxis, K. Kalyanasundaram, and J. Zhang, “Printed organic and molecular electronics,” Kluwer Academic Publishers, chap. 4, sect. 4.2.3.3, pp. 438-440 (2004)
[61] http://www.sigmaaldrich.com/catalog/search/ProductDetail/ALDRICH/ SearchResultsPage, Physical properties of poly(4-vinylphenol) (PVP).
[62] http://www.sigmaaldrich.com/catalog/search/ProductDetail/418552, Physical properties of poly (melamine-co-formaldehyde), methylated (PMF).
[63] http://www.sigmaaldrich.com/catalog/search/ProductDetail/484431, Physical properties of propylene glycol monomethyl ether acetate (PGMEA).
[64] H. Ishii, K. Sugiyama, E. Ito, and K. Seki, “Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces,” Advanced Materials, vol. 11, p. 605 (1999)
[65] http://www.sigaaldrich.com/catalog/search/ProductDetail/ALDRICH/P1802, Physical properties of pentacene.
[66] F. Zhu, B. Low, K. Zhang, and S. Chua, “Lithium–fluoride-modified indium tin oxide anode for enhanced carrier injection in phenyl-substituted polymer electroluminescent devices,” Applied Physics Letters, vol. 79, p. 1205 (2001)
[67] http://www.summit-tech.com.tw/msds/msds.htm, Physical properties of Lithium Fluoride (LiF).
[68] http://www.sigaaldrich.com/catalog/search/ProductDetail/ALDRICH/203645, Physical properties of Lithium Fluoride (LiF).
[69] C. C. Yeh, Y. H. Wang, and T. C. Wen, “Pentacene-based organic thin film transistors on plastic substrate coated with liquid phase deposition SiO2,” Master thesis, chap. 3, sect. 3.3, pp.28-29 (2006)
[70] T. Zyung, S. H. Kim, H. Y. Chu, J. H. Lee, S.C. Lim, J. I. Lee, and J. Oh, “Flexible organic LED and organic thin-film transistor,” Proceedings of the IEEE, vol. 93, p. 1265 (2005)