| 研究生: |
賴冠中 Lai, Kuan-Chung |
|---|---|
| 論文名稱: |
應用無人機空拍與SfM成像進行礫石河床表面粒徑推估 Surface grain size estimation in a gravel river using UAV-based SfM photogrammetry |
| 指導教授: |
詹錢登
Jan, Chyan-Deng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 泥沙粒徑 、粗糙度 、礫石河床 、無人機 、SfM成像 |
| 外文關鍵詞: | Grain size, Roughness, Gravel-bed river, UAV, SfM photogrammetry |
| 相關次數: | 點閱:52 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
河道粒徑大小與分布的調查對於河道流況、輸沙、形態及生態棲地研究至關重要。傳統上粒徑調查方法常以人工調查為主,然而人工方法費時費力,故隨著空拍影像與影像分析技術的快速發展,近年人們開始應用這些新技術來協助進行河道表面泥沙粒徑的調查工作,並且獲得了一定程度的成果。然而這些成果仍然存在許多的差異性,這些差異會影響後續使用者的應用信心。為瞭解無人機空拍與影像分析技術判釋河道泥沙粒徑的應用效果,本研究以南投縣和社溪河道做為研究區域,在研究區域內進行無人機(unmanned aerial vehicle, UAV)空拍調查,同時以傳統方式進行河道泥沙粒徑人工調查。將河道現場空拍所得影像,以運動恢復結構(Structure from Motion, SfM)成像技術,建構河道三維點雲資料。後續用此點雲資料計算出粗糙高度 RH、高程標準偏差σ及去勢化高程標準偏差σd等三種代表河床表面粗糙度的指標。最後將此三種河床表面粗糙度指標的大小及分布,分別與人工採樣所得的河床表面泥沙粒徑大小與分布進行關聯性比對。
結果顯示三種粗糙度指標大小與粒徑大小之間皆有密切的正相關(R2>0.8),且該關係非單一線性關係式,而是指數關係或是冪次方關係,這種關係反映出河床較小礫石對表面粗糙度的影響高於較大礫石或是巨石對表面粗糙度的影響。本研究也據此成果,透過空拍影像分析及八次現地人工調查分別建構了三種河床表面粗糙度指標(RH、σ及σd)與河床表面粒徑之關係式,並在五個採樣區域使用關係式推估粒徑進行驗證。其結果以RH-粒徑關係式推估之粒徑與現調粒徑呈現高度相關(R2>0.8),展示了應用空拍影像建構的粗糙度-粒徑關係式推估粗礫石河床表面粒徑分佈具可行性。
To understand the effectiveness of UAV aerial photography and image analysis techniques in indicate riverbed sediment grain sizes, this study selected the Heshe River in Nantou County, Taiwan, as the research area. UAV aerial surveys were conducted within the study area, alongside traditional manual surveys of riverbed sediment grain sizes. The images obtained from the field surveys were used to construct three-dimensional point cloud data of the riverbed using Structure from Motion (SfM) imaging techniques. This point cloud data was used to calculate three metrics representing riverbed surface roughness: roughness height (RH), elevation standard deviation (σ), and detrended elevation standard deviation (σd). The size and distribution of these indicators were compared with those of riverbed sediment grains obtained from manual sampling. The results showed a strong correlation (R2 > 0.8) between the three roughness metrics and grain size, indicating exponential or power law relationships rather than simple linear ones. Smaller gravel had a greater impact on surface roughness than larger gravel or boulders. Based on these findings, relationships between the roughness metrics (RH, σ, and σd) and grain size were constructed using aerial image analysis and eight field surveys, and validated in five sampling areas. The RH-grain size relationship showed the highest correlation (R2 > 0.8) with the measured grain size, demonstrating the feasibility of using aerial images to construct roughness-grain size relationships for estimating the surface grain size distribution of coarse gravel riverbeds.
Baewert, H., Bimböse, M., Bryk, A., Rascher, E., Schmidt, K.-H., & Morche, D. (2014). Roughness determination of coarse grained alpine river bed surfaces using Terrestrial Laser Scanning data. Zeitschrift für Geomorphologie, Supplementary Issues, 58(1), 81-95. https://doi.org/10.1127/0372-8854/2013/s-00127
Bertin, S., & Friedrich, H. (2016). Field application of close‐range digital photogrammetry (CRDP) for grain‐scale fluvial morphology studies. Earth Surface Processes and Landforms, 41(10), 1358-1369. https://doi.org/10.1002/esp.3906
Brasington, J., Vericat, D., & Rychkov, I. (2012). Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resources Research, 48(11).
Bunte, K., & Abt, S. (2001). Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel- and Cobble-bed Streams for Analyses in Sediment Transport, Hydraulics, and Streambed Monitoring (Vol. 74).
CloudCompareWiki. (2022). Roughness https://www.cloudcompare.org/doc/wiki/index.php/Roughness
Graham, D. J., Reid, I., & Rice, S. P. (2005). Automated sizing of coarse-grained sediments: image-processing procedures. Mathematical geology, 37, 1-28.
Hauer, C., Schmalfuss, L., Unfer, G., Schletterer, M., Fuhrmann, M., & Holzapfel, P. (2023). Evaluation of the potential stranding risk for aquatic organisms according to long-term morphological changes and grain size in alpine rivers impacted by hydropeaking. Sci Total Environ, 883, 163667. https://doi.org/10.1016/j.scitotenv.2023.163667
Hauer, C., Unfer, G., Holzapfel, P., Haimann, M., & Habersack, H. (2014). Impact of channel bar form and grain size variability on estimated stranding risk of juvenile brown trout during hydropeaking. Earth Surface Processes and Landforms, 39(12), 1622-1641. https://doi.org/10.1002/esp.3552
Heritage, G. L., & Milan, D. J. (2009). Terrestrial Laser Scanning of grain roughness in a gravel-bed river. Geomorphology, 113(1-2), 4-11. https://doi.org/10.1016/j.geomorph.2009.03.021
Hodge, R., Brasington, J., & Richards, K. (2009). Analysing laser‐scanned digital terrain models of gravel bed surfaces: linking morphology to sediment transport processes and hydraulics. Sedimentology, 56(7), 2024-2043. https://doi.org/10.1111/j.1365-3091.2009.01068.x
Jan, C.-D., & Dey, L. (2022). Effects of sediment fractions on slump-flow parameters of fine-and coarse-sediment suspensions. Journal of Non-Newtonian Fluid Mechanics, 310, 104925.
Kellerhals, R., & Bray, D. I. (1971). Sampling procedures for coarse fluvial sediments. Journal of the Hydraulics Division, 97(8), 1165-1180.
Pearson, E., Smith, M. W., Klaar, M. J., & Brown, L. E. (2017). Can high resolution 3D topographic surveys provide reliable grain size estimates in gravel bed rivers? Geomorphology, 293, 143-155. https://doi.org/10.1016/j.geomorph.2017.05.015
Schneider, J. M., Rickenmann, D., Turowski, J. M., & Kirchner, J. W. (2015). Self‐adjustment of stream bed roughness and flow velocity in a steep mountain channel. Water Resources Research, 51(10), 7838-7859. https://doi.org/10.1002/2015wr016934
Smart, G., Aberle, J., Duncan, M., & Walsh, J. (2012). Measurement and analysis of alluvial bed roughness. Journal of Hydraulic Research, 42(3), 227-237. https://doi.org/10.1080/00221686.2004.9728388
Steer, P., Guerit, L., Lague, D., Crave, A., & Gourdon, A. (2022). Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds. Earth Surface Dynamics, 10(6), 1211-1232. https://doi.org/10.5194/esurf-10-1211-2022
Tullos, D., & Wang, H. W. (2014). Morphological responses and sediment processes following a typhoon‐induced dam failure, Dahan River, Taiwan. Earth Surface Processes and Landforms, 39(2), 245-258.
Vázquez-Tarrío, D., Borgniet, L., Liébault, F., & Recking, A. (2017). Using UAS optical imagery and SfM photogrammetry to characterize the surface grain size of gravel bars in a braided river (Vénéon River, French Alps). Geomorphology, 285, 94-105. https://doi.org/10.1016/j.geomorph.2017.01.039
Wolman, M. G. (1954). A method of sampling coarse river‐bed material. EOS, Transactions American Geophysical Union, 35(6), 951-956.
Westoby, M. J., Dunning, S. A., Woodward, J., Hein, A. S., Marrero, S. M., Winter, K., & Sugden, D. E. (2015). Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry. Journal of Glaciology, 61(230), 1088-1102. https://doi.org/10.3189/2015JoG15J086
Wong, T., Khanal, S., Zhao, K., & Lyon, S. W. (2024). Grain size estimation in fluvial gravel bars using uncrewed aerial vehicles: A comparison between methods based on imagery and topography. Earth Surface Processes and Landforms, 49(1), 374-392.
Wong, T. (2022). Estimation of grain sizes in a river through UAV-based SfM photogrammetry (Master's thesis, The Ohio State University).
Woodget, A., Visser, F., Maddock, I., Carbonneau, P., & Austrums, R. (2016). Quantifying fluvial substrate size using hyperspatial resolution UAS imagery and SfM-photogrammetry. Extended Abstract, 11th International Symposium on Ecohydraulics,
Woodget, A. S., & Austrums, R. (2017). Subaerial gravel size measurement using topographic data derived from a UAV‐SfM approach. Earth Surface Processes and Landforms, 42(9), 1434-1443.
Woodget, A. S., Fyffe, C., & Carbonneau, P. E. (2018). From manned to unmanned aircraft: Adapting airborne particle size mapping methodologies to the characteristics of sUAS and SfM. Earth Surface Processes and Landforms, 43(4), 857-870. https://doi.org/10.1002/esp.4285
Wu, F.-C., Wang, C.-K., & Lo, H. P. (2021). FKgrain: A topography-based software tool for grain segmentation and sizing using factorial kriging. Earth Science Informatics, 14(4), 2411-2421. https://doi.org/10.1007/s12145-021-00660-z
巫佳航(2022)。光照角度對影像辨識河床質表面粒徑之影響。國立中興大學碩士論文。。臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/cq8df9。
陳祥偉(2023)。應用UAV空拍影像及Basegrain軟體進行河道泥沙粒徑分析之研究。國立成功大學碩士論文。臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/6x28wx。
曾志民、曾仁彥、張國楨、黃美甄、陳振宇(2023)。應用無人載具高解析影像及三維點雲於山區河床表層粒徑之判釋研究。土木水利,50(5),91-98。https://doi.org/10.6653/MoCICHE.202310_50(5).0012
鲁瀚友、李志威、胡旭跃、胡铁松、袁昕亚(2020)。拉萨河直孔水库上下游河床粒径与粗糙度变化。水力发电学报,,39(8),104-111。