簡易檢索 / 詳目顯示

研究生: 陳昱霖
Chen, Yu-Lin
論文名稱: 應用機組聚類概念實現中期機組排程
Application of Unit Clustering Concept to Mid-term Unit Commitment
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 156
中文關鍵詞: 中期機組排程串流式水力發電模型聚類機組排程
外文關鍵詞: Mid-term Unit Commitment, Cascade Hydropower Model, Clustered Unit Commitment
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為因應電力自由化的趨勢,台灣電力公司於2014年開始持續開發短期日前市場機組排程最佳化程式。本研究為使此機組排程程式之水火協調更加完善,便在其架構基礎上新建大甲溪串流式水力發電模型,而水力發電通常需要為期至少一週的規劃週期才能有效反映其水文及運轉需求,但在模型複雜度提高且規劃時間範圍需加長的情況下會衍生模擬時間過長的問題。本研究於是採用機組聚類的概念將模型改建為聚類機組排程模型,藉由減少機組發電組合使排程程式能夠以較短的模擬執行時間完成中期機組排程。經由模擬案例顯示,在正常無缺量的情況下,採用聚類機組模型所得出的排程結果與詳細模型的結果差異不大,但明顯加快了收斂速度,達到縮短執行時間的目的。

    In response to the trend of electricity liberalization, Taiwan Power Company (Taipower) has been developing short-term unit commitment (UC) optimi-zation program for day-ahead market since 2014. To better cooperate hy-dro-thermal coordination with the present unit commitment program, a new mathematical model of Da-Chia river cascade hydropower system is intro-duced in this thesis. The planning horizon of hydropower system usually needs to be at least one week to reflect the hydrological condition and re-quirement. It inevitably prolongs simulation time due to the extended plan-ning horizon as well as model complexity. To solve this problem, unit clus-tering concept is realized to transform the original detail model into a clustered unit commitment model. By simplifying the models of generator portfolio, the execution time of mid-term unit commitment program can be significantly reduced. Case studies show that the UC result obtained from the clustered model only produces minor difference compared to that from the detail model under the no-slack condition. On the other hand, the clustered model facili-tates fast computational convergence that achieves the purpose of simulation time reduction.

    摘要 I Abstract II 誌謝 XIII 目錄 XIV 表目錄 XVII 圖目錄 XIX 符號索引 XXVI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.2.1 短、中、長期機組排程 3 1.2.2 機組聚類模型 6 1.3 本文貢獻 10 1.4 論文章節概要 11 第二章 全系統機組排程 13 2.1 機組排程與水火協調簡介 13 2.2 GAMS軟體簡介 14 2.3 既有之全系統機組排程詳細模型 15 2.3.1 目標函數與系統需求限制式 16 2.3.2 一般火力機組模型 18 2.3.3 複循環火力機組模型 24 2.3.4 抽蓄式水力發電模型 27 2.4 新建串流式水力發電模型 31 2.4.1 大甲溪流域水力發電資源簡介 31 2.4.2 串流式水力發電模型相關文獻回顧 33 2.4.3 串流式水力發電模型限制式 37 2.5 本章小結 45 第三章 火力發電機組模型之聚類 46 3.1 機組聚類模型輸入參數整合方式 46 3.2 機組聚類模型輸出變數整合方式 51 3.3 機組聚類模型目標函數與系統需求限制式 53 3.4 一般火力機組模型聚類 56 3.5 複循環火力機組模型聚類 65 3.6 本章小結 76 第四章 水力發電機組模型之聚類 78 4.1 大甲溪串流式水力機組模型聚類 78 4.2 濁水溪抽蓄水力機組模型聚類 84 4.2.1 GAMS求解二次限制式相關討論 89 4.3 本章小結 93 第五章 案例分析 94 5.1 大甲溪串流式水力發電詳細模型之七日模擬案例分析 94 5.1.1 2017年7月13日至19日─豐水期案例 94 5.1.2 2017年10月1日至7日─枯水期案例 98 5.2 火力機組聚類模型之七日模擬案例分析 101 5.2.1 2017年7月13日至19日─無電能缺量案例 101 5.2.2 2017年10月1日至7日─無電能缺量案例 108 5.2.3 2017年8月3日至9日─電能缺量案例 115 5.2.4 2017年12月21日至27日─電能缺量案例 121 5.3 水力機組聚類模型之七日模擬案例分析 128 5.3.1 2017年7月13日至19日─無電能缺量案例 129 5.3.2 2017年10月1日至7日─無電能缺量案例 137 5.3.3 2017年8月3日至9日─電能缺量案例 139 5.3.4 2017年12月21日至27日─電能缺量案例 144 5.4 本章小結 148 第六章 結論與未來展望 150 6.1 結論 150 6.2 未來展望 152 參考文獻 154

    [1] 王京明、孫承祥,“我國電業自由化政策與電業法修正草案之評議”,台電工程月刊,第795期,pp. 56-71,2014年11月。
    [2] 胡宗豪、吳進忠、蔡金助、黃維綱、徐琨瑋,“台灣電力系統日前市場最佳化程式開發”,台電工程月刊,第796期,pp. 104-115,2014年12月。
    [3] 徐唯耀、吳進忠、石連柱、蔡金助、胡宗豪、黃維綱、徐琨瑋,“抽蓄電廠對電力市場之影響與貢獻”,台電工程月刊,第796期,pp. 116-123,2014年12月。
    [4]N. Kjeldsen, M. Chiarandini, “Heuristic solutions to the long-term unit commitment problem with cogeneration plants,” Computers & Opera-tions Research 39, 269-282, 2012.
    [5]A. Franz and J. Zimmermann, “A two-stage heuristic procedure for solving the long-term unit commitment problem with pumped storages and its application to the German electricity market,” in Operations Re-search Proceedings 2016, pp. 149-155.
    [6]A. Franz, J. Rieck and J. Zimmermann, “Fix-and-optimize procedures for solving the long-term unit commitment problem with pumped storages,” Ann. Oper. Res., 2018.
    [7]P. Andrianesis, G. Liberopoulos, P. Biskas and A. Bakirtzis, “Medi-um-term unit commitment in a pool market,” in 8th international con-ference on the European energy market (EEM), pp. 461-466, 2011.
    [8]S. Liao, Z. Li, G. Li, J. Wang and X. Wu, “Modeling and optimization of the medium-term units commitment of thermal power,” Energies 2015, 8, 12848-12864,Nov. 2015.
    [9]O. B. Fosso, A. Gjelsvik, A. Haugstad, M. Birger, and I. Wangensteen, “Generation scheduling in a deregulated system. The Norwegian case,” IEEE Trans. Power Syst., vol. 14, no. 1, pp. 75-81, Feb. 1999.
    [10]T. Senjyu, K. Shimabukuro, K. Uezato and T. Funabashi, “A fast tech-nique for unit commitment by genetic algorithm based on unit integra-tion,” IFAC Power Plants and Power Systems Control, Sep. 2003.
    [11]S. Sen and D. P. Kothari, “An equivalencing technique for solving the Large-Scale thermal unit commitment problem,” in The Next Generation of Electric Power Unit Commitment Models, B. F. Hobbs, M. H. Rothkopf, R. P. O’Neill, and H. po Chao, Eds. Boston: Kluwer Aca-demic Publishers, pp. 211-225, 2002.
    [12]B. Palmintier and M. Webster, “Heterogeneous unit clustering for effi-cient operational flexibility modeling,” IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1089-1098, May 2014.
    [13]J. Meus, K. Poncelet and E. Delarue, “Applicability of a clustered unit commitment model in power system modeling,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 2195-2204, Mar. 2018.
    [14]PLEXOS Wiki, Aug. 2018, [online], Available: https://wiki.energyexemplar.com/
    [15] 盧展南、張簡樂仁、吳元康、張文恭、吳瑞明、梁敏雄、林裕盛、楊豐名、羅夢娜、董道廷、許元禹、江典聲、袁子倫、楊亞叡、徐朮、葉冠廷、李宜樺、林翎、邱信瑋、鄭宇軒、林鈺霖、Edwin Liu, Paul Worhach, Jake Zhang, Wei-Jen Lee ,“強化現行輔助服務估算機制及作業平台期末報告”,pp. 183-206,2018年10月。
    [16]I. Abdou and M. Tkiouat, “Unit commitment problem in electrical power system: A literature review,” International Journal of Electrical and Computer Engineering, vol. 8, no. 3, pp. 1357-1372, June 2018.
    [17]GAMS Development Corporation, Gurobi 8, [online], Available: https://www.gams.com/latest/docs/S_GUROBI.html
    [18]J. Alemany, D. Moitre, H. Pinto and F. Magnago, “Short-term sched-uling of combined cycle units using mixed integer linear programming solution,” Energy Power Eng., vol. 05, no. 02, pp. 161–170, 2013.
    [19]P. Ilak, S. Krajcar, I. Rajšl and M. Delimar, “Profit maximization of a hydro producer in a day-ahead energy market and ancillary service markets,” in EuroCon 2013, Zagreb, Croatia, 1-4 July 2013.
    [20]S. J. Kazempour, M. Hosseinpour and M. P. Moghaddam, “Self-scheduling of a joint hydro and pumped-storage plants in energy, spinning reserve and regulation markets,” in IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, July 2009.
    [21]H. Abgottspon, “Mid-term hydro power planning for energy and an-cillary services,” M.S. thesis, ETH Zurich, 2009.
    [22]J. Q. Li, M. A. Marino, C. M. Ji, and Y. S. Zhang, “Mathematical models of inter-plant economical operation of a cascade hydropower system in electricity market,” Water Resour Manage, 23(10), 2003-2013, 2009.
    [23]V. Karaeren, “Maximizing energy generation of a cascade hydropower system,” M.S., Department of Civil Engineering, Nov. 2014.
    [24]L. Guedes, D. Vieira, A. Lisboa, R. Saldanha, "A continuous compact model for cascaded hydro-power generation and preventive maintenance scheduling", Int. J. Elect. Power Energy Syst., vol. 73, pp. 702-710, 2015.
    [25]Xu, B., P.-A. Zhong, Z. Stanko, Y. Zhao, and W. W.-G. Yeh, “A mul-tiobjective short-term optimal operation model for a cascade system of reservoirs considering the impact on long-term energy production,” Water Resour. Res., 51, 3353-3369, 2015.
    [26]L. Yuan, J. Zhou, C. Chang, P. Lu, C. Wang, M. Tayyab, “Short-term joint optimization of cascade hydropower stations on daily power load curve,” in Knowledge Engineering and Applications (ICKEA), IEEE International Conference on. IEEE, pp. 236-240, 2016.
    [27]A. Hamann, G. Hug, “Using cascaded hydropower like a battery to firm variable wind generation,” 2016 IEEE Power and Energy Society General Meeting (PESGM), 2016.
    [28]D. Apostolopoulou and M. McCulloch, “Cascade hydroelectric power system model and its application to an optimal dispatch design,” in IREP’ 2017 - 10th Bulk Power Systems Dynamics and Control Symposium, pp. 1–6, Aug. 2017.
    [29]Quadratically constrained quadratic program, Wikipedia, [online], Availa-ble:https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
    [30]Y. Zhu, J. Jian, J. Wu, L. Yang, “Global optimization of non-convex hydro-thermal coordination based on semidefinite programming,” in IEEE Transactions on Power Systems, vol. 28, no. 4, November 2013.

    無法下載圖示 校內:2024-08-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE