簡易檢索 / 詳目顯示

研究生: 馮子宸
Feng,Tzu-Chen
論文名稱: 聚合電動車充電站參與輔助服務之儲能系統容量規劃
Sizing of ESSs with Aggregated EV Charging Stations for Participation in Ancillary Services
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 84
中文關鍵詞: 充電站儲能系統輔助服務儲能容量規劃線性規劃差分進化演算法
外文關鍵詞: charging station, energy storage system, ancillary service, capacity sizing, linear programming, differential evolution algorithm
相關次數: 點閱:112下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來世界各國為了減少石化燃料對環境造成的污染,大多以綠能、儲能與電動車等分散式資源作為能源發展研究項目。隨著電動車使用的盛行,設置電動車充電站可以避免車主的里程焦慮,但是過多的充電需求與不確定之負載曲線將導致鄰近電網變壓器或饋線過載及增加負載尖離峰差距。
    電動車充電站聚合商可以投資儲能系統以降低充電場站之用電成本,根據轄下不同之充電站類型規劃出所需建設容量,並結合電能管理最佳化營運利潤。在需求面的管理可聚合多個充電場站以需量反應方式參加日前輔助服務市場,進而維持電網穩定並獲取服務收入。
    本研究旨在提出聚合充電站參與輔助服務的儲能系統最佳容量規劃方法,使用雙迴圈架構決策多個充電場站的儲能容量,同時進行電能套利與執行即時備轉輔助服務,以最大化投資報酬率。本文中探討四種類型充電場站之模擬案例,分析各種情境下即時備轉執行週期與調度指令次數及不同即時備轉容量結清價格與儲能電池價格等變數對儲能容量建議與效益之改變,模擬結果顯示出聚合充電站參加即時備轉輔助服務可提升規劃儲能系統的投資報酬率。

    In recent years, the most of countries have researched the distributed resources, such as green energy, energy storage system (ESS), and electric vehicles (EVs), in order to reduce the environmental pollution caused by fossil fuels. With the prevalence of EVs usage, the charging stations can avoid the range anxiety from EV users. However, excessive charging demands and uncertain load profiles will lead to overloading adjacent grid transformers or feeders and increasing the difference among peak and off-peak load.
    The charging station operators can size the optimal capacity of energy storage in different types of charging stations under their jurisdiction to reduce the electricity cost and combine with energy management system (EMS) to maximize the operating profit. The application on the demand side can aggregate multiple charging stations to participate in the day-ahead ancillary service market as a demand-response resource to maintain grid stability and earn service revenue.
    This research proposes an optimal capacity sizing method for energy storage systems and aggregate multiple charging stations participating in auxiliary services. The dual-loop architecture is used to determine the optimal energy storage capacity for energy arbitrage and spinning reserve to maximize the rate of return (ROR).
    Case studies simulate four types of charging stations and analyze the benefits under different scenarios. The sensitivity resulted by execution period of spinning reserve, the number of dispatch notices of spinning reserve, the bidding price in the day-ahead ancillary service market, and the battery price are analyzed. The simulation results show that the aggregated charging station participating in the ancillary service can improve the overall rate of return.

    摘要I EXTENDED ABSTRACTII 致謝VI 目錄VII 圖目錄XI 表目錄XIV 第一章 緒論1 1.1 研究與動機1 1.2 文獻回顧2 1.3 研究方法與貢獻4 1.4 論文架構5 第二章 系統架構6 2.1 系統架構介紹6 2.2 電動車充電站7 2.2.1 電動車充電規格7 2.2.2 各類型充電站8 2.3 儲能系統9 2.4 輔助服務市場機制11 2.4.1 輔助服務11 2.4.2 即時備轉13 第三章 充電站最佳儲能容量規劃方法15 3.1 最佳化方法架構15 3.2 充電站調度問題描述19 3.2.1 充電站營運成本19 3.2.2 充電站營運收入21 3.2.3 目標函數22 3.2.4 調度限制式22 3.3 儲能規劃問題描述27 3.3.1 充電站儲能系統和太陽能發電系統成本27 3.3.2 充電站總營運成本29 3.3.3 充電站總充電服務收入31 3.3.4 聚合充電站參與輔助服務收入32 3.3.5 目標函數33 3.3.6 規劃限制式34 3.4 線性規劃36 3.5 差分進化演算法37 3.5.1 初始化參數37 3.5.2 突變38 3.5.3 交配38 3.5.4 選擇38 3.5.5 終止迭代條件39 第四章 模擬結果41 4.1 模擬系統相關參數41 4.1.1 各類型充電站相關參數41 4.1.2 電動車相關參數45 4.1.3 儲能系統與太陽能發電系統相關參數52 4.1.4 電價參數53 4.1.5 輔助服務市場相關參數56 4.2 模擬案例與結果分析57 4.2.1 各種情境下儲能容量規劃結果57 4.2.2 不同即時備轉執行週期與調度指令次數之規劃結果61 4.2.3 不同即時備轉容量結清價格之規劃結果66 4.2.4 不同儲能電池價格之規劃結果70 第五章 結論與未來研究方向74 5.1 結論74 5.2 未來研究方向75 參考文獻76

    [1] 經濟部,能源轉型白皮書,2020年9月。
    [2] 蘇金勝,臺灣能源轉型機會與挑戰,《工程》第93卷01期,2020年3月。
    [3] 智慧電網推動小組,智慧電網總體方案-核定本,2020年2月修正。
    [4] Y. Yang, Q. Ye, L. J. Tung, M. Greenleaf, and H. Li, “Integrated Size and Energy Management Design of Battery Storage to Enhance Grid Integration of Large-Scale PV Power Plants,” IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 394-402, Jan. 2018.
    [5] E. Veldman and R. A. Verzijlbergh, “Distribution Grid Impacts of Smart Electric Vehicle Charging From Different Perspectives,” IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 333-342, Jan. 2015.
    [6] L. Hattam and D. V. Greetham, “Green Neighbourhoods in Low Voltage Networks: Measuring Impact of Electric Vehicles and Photovoltaics on Load Profiles,” Journal of Modern Power Systems and Clean Energy, vol. 5, no. 1, pp. 105-116, Jan. 2017.
    [7] J. Liu, C. Hu, A. Kimber, and Zhaoyu Wang,“Uses, Cost-Benefit Analysis, and Markets of Energy Storage Systems for Electric Grid Applications,” Journal of Energy Storage, vol 32, Dec. 2020.
    [8] L. Kendall, V. Viswanathan, P. Balducci, J. Alam, V. Fotedar, V. Koritarov, and B. Hadjerioua,“An Evaluation of Energy Storage Cost and Performance Characteristics,” Energies, no. 13, Jun. 2020.
    [9] S. Pinedaand and J. M. Morales, “Chronological Time-Period Clustering for Optimal Capacity Expansion Planning with Storage,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 7162-7170, Nov. 2018.
    [10] S. Bandyopadhyay, G. R. C. Mouli, Z. Qin, L. R. Elizondo, and P. Bauer, “Techno-Economical Model Based Optimal Sizing of PV-Battery Systems for Microgrids,” IEEE Transactions on Sustainable Energy, vol. 11, no. 3, pp. 1657-1668, Jul. 2020.
    [11] A. Khayatian, M. Barati, and G. J. Lim, “Integrated Microgrid Expansion Planning in Electricity Market with Uncertainty,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp.3634-3643, Jul. 2018.
    [12] S. Mohamed, M. G. Shaaban, M. Ismail, E. Serpedin, and K. A. Qaraqe, “An Efficient Planning Algorithm for Hybrid Remote Microgrids,” IEEE Transactions on Sustainable Energy, vol. 10, no. 1, pp. 257-267, Jan. 2019.
    [13] I. Alsaidan, A. Khodaei, and W. Gao, “A Comprehensive Battery Energy Storage Optimal Sizing Model for Microgrid Applications,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 3968-3980, Jul. 2018.
    [14] A. S. A. Awad, T. H. M. EL-Fouly, and M. M. A. Salama, “Optimal ESS Allocation for Benefit Maximization in Distribution Networks,” IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1668-1678, Jul. 2017.
    [15] L. Zhou, Y. Zhang, X. Lin, C. Li, Z. Cai, and P. Yang, “Optimal Sizing of PV and BESS for a Smart Household Considering Different Price Mechanisms,” IEEE Access, vol. 6, pp. 41050-41059, Jun. 2018.
    [16] A. Bera, S. Almasabi, Y. Tian, R. H. Byrne, B. Chalamala, T. A. Nguyen, and J. Mitra, “Maximising the investment returns of a grid‐connected battery considering degradation cost,” IET Generation, Transmission & Distribution, vol. 14, no. 21, pp. 4711-4718, Nov. 2020.
    [17] Y. Zhang, H. Khani, Y. Xu, H. Yang, Z. Y. Dong, and R. Zhang, “Optimal Whole-Life-Cycle Planning of Battery Energy Storage for Multi-Functional Services in Power Systems,” IEEE Transactions on Sustainable Energy, vol. 11, no. 4, pp. 2077-2086, Oct. 2020.
    [18] G. Cardoso, M. Stadler, S. Mashayekh, and E. Hartvigsson, “The impact of ancillary services in optimal DER investment decisions,” Energy, vol. 130, pp. 99-112, May 2017.
    [19] P. M. de Quevedo, G. Muñoz-Delgado, and J. Contreras, “Impact of Electric Vehicles on the Expansion Planning of Distribution Systems Considering Renewable Energy, Storage, and Charging Stations,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 794-804, Jan. 2019.
    [20] Q. Yan, B. Zhang, and M. Kezunovic, “Optimized Operational Cost Reduction for an EV Charging Station Integrated With Battery Energy Storage and PV Generation,” IEEE Transactions on Smart Grid, vol. 10, no. 2, pp. 2096-2106, Mar. 2019.
    [21] H. Ding, Z. Hu, and Y. Song, “Value of the energy storage system in an electric bus fast charging station,” Applied Energy, vol. 157,pp. 630-639, Jan. 2015.
    [22] M. Moradzadeh and M.M.A. Abdelaziz, “A New MILP Formulation for Renewables and Energy Storage Integration in Fast Charging Stations,” IEEE Transactions on Transportation Electrification, vol. 6, no. 1, pp. 181-198, Mar. 2020.
    [23] W. Rehman, R. Bo, H. Mehdipourpicha, and J.W. Kimball, “Sizing battery energy storage and PV system in an extreme fast charging station considering uncertainties and battery degradation,” Applied Energy, vol. 313, Mar. 2022.
    [24] M. R. Sarker, H. Pandžić, K. Sun, and M. A. Ortega-Vazquez, “Optimal operation of aggregated electric vehicle charging stations coupled with energy storage,” IET Generation, Transmission & Distribution, vol. 12, no. 5, pp. 1127-1136, Mar. 2018.
    [25] X. Duan, Z. Hu, and Y. Song, “Bidding Strategies in Energy and Reserve Markets for an Aggregator of Multiple EV Fast Charging Stations With Battery Storage,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 1, pp. 471-482, Jan. 2021.
    [26] L. Oliveira, A. Ulahannan, M. Knight, and S. Birrell, “Wireless Charging of Electric Taxis: Understanding the Facilitators and Barriers to Its Introduction,” Sustainability, vol. 12, pp.8798, Oct. 2020.
    [27] H. Wu, G. K. H. Pang, K. L. Choy, and H. Y. Lam, “An Optimization Model for Electric Vehicle Battery Charging at a Battery Swapping Station,” IEEE Transactions on Vehicular Technology, vol. 67, no. 2, pp. 881-895, Feb. 2018.
    [28] A. Khaligh and M. D'Antonio, “Global Trends in High-Power On-Board Chargers for Electric Vehicles,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3306-3324, Apr. 2019.
    [29] K. Kelly, S. Noblet, and A. Brown, “Best Practices for Electric Vehicle Supply Equipment Installations in the National Parks,” Golden, CO: National Renewable Energy Laboratory (NREL), Dec. 2019.
    [30] 王順立,國際充電規格及ARTC充電設施介紹,《車輛研測資訊》第107期,2015年8月。
    [31] SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler J1772, [Online]. Available: https://www.sae.org/standards/content/j1772/ [Accessed 4 Jun. 2022].
    [32] IEC 61851. [Online]. Available: https://webstore.iec.ch/preview/info_iec61851-25%7Bed1.0%7Db.pdf [Accessed 4 Jun. 2022].
    [33] IEC 62196. [Online]. Available: https://webstore.iec.ch/preview/info_iec62196-6%7Bed1.0%7Db.pdf [Accessed 4 Jun. 2022].
    [34] GB, Connection set for conductive charging of electric vehicles. [Online]. Available:http://www.camra.org.cn/static/uploadfile/ckedit/201709290235103666.pdf [Accessed 4 Jun. 2022].
    [35] C. Lilly, “EV connector types,” Apr. 2022, [Online]. Available: https://www.zap-map.com/charge-points/connectors-speeds/ [Accessed 4 Jun. 2022].
    [36] J. Ogden, “Level 1 vs Level 2 vs Level 3 Vs Level 4 chargers: What’s the Difference?” , [Online]. Available: https://topcharger.co.uk/level-1-vs-level-2-vs-level-3-vs-level-4-chargers-whats-the-difference/ [Accessed 4 Jun. 2022].
    [37] Enel X, “The Ultimate Guide to Electric Vehicle Public Charging Pricing,” Nov. 2019, [Online]. Available: https://evcharging.enelx.com/resources/blog/579-the-ultimate-guide-to-electric-vehicle-public-charging-pricing [Accessed 4 Jun. 2022].
    [38] A. A. Z. Shaqsi, K. Sopian, and A. Al-Hinai, “Review of energy storage services, applications, limitations, and benefits,” Energy Reports, vol. 6, pp.288-206, Jul. 2020.
    [39] Asian Development Bank, “Handbook on Battery Energy Storage System,” Dec. 2018.
    [40] X. Hu, C. Zou, C. Zhang, and Y. Li, “Technological Developments in Batteries: A Survey of Principal Roles, Types, and Management Needs,” IEEE Power and Energy Magazine, vol. 15, no. 5, pp. 20-31, Oct. 2017.
    [41] P. Li1, Y. Zhao1, Y. Shen, and S. H. Bo, “Fracture Behavior in Battery Materials”, Journal of Physics: Energy, vol. 2, no. 2, Apr. 2020.
    [42] P. Keil, S. F. Schuster, J. Wilhelm, J. Travi, A. Hauser, R. C. Karl, and A. Jossen, “Calendar Aging of Lithium-Ion Batteries,” Journal of The Electrochemical Society, vol. 163, no. 9, Jul. 2016.
    [43] X. G. Yang, Y. Leng, G. Zhang, S. Ge, and C. Y. Wang, “Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition from Linear to Nonlinear Aging,” Journal of Power Sources, vol. 360, pp.28-40, Aug. 2017.
    [44] E. Hossain, D. Murtaugh, J. Mody, H. M. R. Faruque, M. S. Haque Sunny, and N. Mohammad, “A Comprehensive Review on Second-Life Batteries: Current State, Manufacturing Considerations, Applications, Impacts, Barriers & Potential Solutions, Business Strategies, and Policies,” IEEE Access, vol. 7, pp. 73215-73252, May 2019.
    [45] Y. Deng, Y. Zhang, F. Luo and Y. Mu, “Operational Planning of Centralized Charging Stations Utilizing Second-Life Battery Energy Storage Systems,” IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 387-399, Jan. 2021.
    [46] W. Ma, W. Wang, X. Wu, R. Hu, F. Tang, W. Zhang, et al., “Optimal Allocation of Hybrid Energy Storage Systems for Smoothing Photovoltaic Power Fluctuations Considering the Active Power Curtailment of Photovoltaic, ” IEEE Access, vol. 7, pp. 74787-74799, Jun. 2019.
    [47] 電力交易平台參考資料,輔助服務概論,2022年5月。
    [48] 電力交易平台參考資料,日前輔助服務市場之交易商品規格,2022年5月。
    [49] 電力交易平台參考資料,日前輔助服務市場之參與作法,2022年5月。
    [50] 電力交易平台參考資料,日前輔助服務市場運作,2022年5月。
    [51] 鄭文吉,漫談蒙地卡羅法的原理及其應用,《行政院農業委員會高雄區農業改良場研究彙報》第23卷第1期,2012年6月。
    [52] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, “An efficient k-means clustering algorithm: analysis and implementation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 881-892, Jul. 2002.
    [53] C. Zhou, K. Qian, M. Allan, and W. Zhou, “Modeling of the Cost of EV Battery Wear Due to V2G Application in Power Systems,” IEEE Transactions on Energy Conversion, vol. 26, no. 4, pp. 1041-1050, Dec. 2011.
    [54] 方述誠,線性規劃(Linear Programming),《數學傳播》第17卷01期,1993年3月。
    [55] D. Bertisimas and J. N. Tsitsiklis, “Introduction to Linear Optimization”, 1997.
    [56] S. Das and P. N. Suganthan, “Differential Evolution: A Survey of the State-of-the-Art,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 4-31, Feb. 2011.
    [57] OpenEl, “Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States,” Jul. 2013, [Online]. Available: https://openei.org/doe-opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states [Accessed 29 May 2022].
    [58] Mendeley Data, “Dataset on Hourly Load Profiles for a Set of 24 Facilities from Industrial, Commercial, and Residential End-use Sectors,” Aug. 2020, [Online]. Available: https://data.mendeley.com/datasets/rfnp2d3kjp/1 [Accessed 29 May 2022].
    [59] 電動車充電站地圖,PlugShare,[Online]. Available: https://www.plugshare.com/tw [Accessed 7 Jun. 2022].
    [60] 台達電子工業股份有限公司,AC MAX,[Online]. Available: https://filecenter.deltaww.com/Products/download/21/2101/Catalogue/AC%20MAX-Leaflet_TW_202104.pdf [Accessed 29 May 2022].
    [61] 台達電子工業股份有限公司,DC City Charger 100kW,[Online]. Available: https://filecenter.deltaww.com/Products/download/21/2101/Catalogue/DC%20City%20Charger%20100kW_Leaflet_TW_202112.pdf [Accessed 29 May 2022].
    [62] 飛宏科技股份有限公司,DS系列-150kW,[Online]. Available: https://www.phihong.com.tw/newcatalog/2020-21_EV_Chargers_TW.pdf [Accessed 29 May 2022].
    [63] J. Smart and S. Schey, “Battery Electric Vehicle Driving and Charging Behavior Observed Early in the EV Project,” Society of Automotive Engineers World Congress 2012, Apr. 2012.
    [64] K. Yunus, H. Z. De La Parra and M. Reza, “Distribution grid impact of Plug-In Electric Vehicles charging at fast charging stations using stochastic charging model,” Proceedings of the 2011 14th European Conference on Power Electronics and Applications, pp. 1-11, Sep. 2011.
    [65] 王建棕,「充電站電能管理與充電價格策略研究」,國立中山大學碩士論文,2016年6月。
    [66] Y. Yang, Z. Tan, and Y. Ren, “Research on Factors That Influence the Fast Charging Behavior of Private Battery Electric Vehicles,” Sustainability, vol. 12, no. 8, pp. 3439, 2020.
    [67] 台達電子工業股份有限公司,PCS125,[Online]. Available: https://filecenter.deltaww.com/Products/download/18/Products-202202091424210760.pdf [Accessed 29 May 2022].
    [68] 台達電子工業股份有限公司,Li-ion Battery / BSO-CS,[Online]. Available: https://filecenter.deltaww.com/Products/download/18/Products-202202091453318712.pdf [Accessed 29 May 2022].
    [69] 台灣積體電路製造股份有限公司,用電大戶設置再生能源說明及面臨之挑戰,2021年9月27日。
    [70] 中租全民電廠,太陽能發電自用較省錢?潛在成本你必須了解,[Online]. Available: https://www.finmart.com.tw/Wiki/ALL/04 [Accessed 15 Jun. 2022].
    [71] 台電公司,電動車充換電設施電價,2022年5月30日,[Online]. Available:https://www.taipower.com.tw/upload/6594/2022052710021581051.pdf [Accessed 29 May 2022].
    [72] 台電公司,電價表,2018年6月26日,[Online]. Available: https://www.taipower.com.tw/upload/238/2022060213502566374.pdf [Accessed 29 May 2022].
    [73] 台電公司,電力交易平台,[Online]. Available: https://etp.taipower.com.tw/web/service_market/historical_settlement_trading [Accessed 29 May 2022].
    [74] 台電公司,各種發電方式之發電成本,[Online]. Available: https://www.taipower.com.tw/taipower/content/govern/govern05_.aspx [Accessed 29 May 2022].
    [75] 中華民國中央銀行,重貼現率,[Online]. Available: https://www.cbc.gov.tw/tw/lp-640-1.html [Accessed 29 May 2022].
    [76] U.S. Department of Energy, “Energy Storage Grand Challenge: Energy Storage Market Report,” Dec. 2020.

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE