簡易檢索 / 詳目顯示

研究生: 洪俊彥
Hung, Chun-Yen
論文名稱: 燒結促進劑對Li2(Zn0.9Ca0.1)Ti3O8介電陶瓷微波特性之影響與應用
The Effect of Added Sintering Aids on Microwave Dielectric Properties of Li2(Zn0.9Ca0.1)Ti3O8 Ceramics and Applications
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 93
中文關鍵詞: 介電陶瓷濾波器
外文關鍵詞: dielectric ceramic, filter
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文內將討論Li2(Zn0.9Ca0.1)Ti3O8介電陶瓷材料,藉由分別添加不同燒結促進劑CuO、V2O5,探討產生的液相對其微波特性的影響。實驗結果顯示,添加0.5wt%的V2O5可有效降低燒結溫度到980℃,此時可得介電常數εr約為26.84、Q×f值為35,595 GHz(at 8.82 GHz)、溫度飄移係數τf約為+0.72 ppm/℃。
    另外,本論文以FR4、氧化鋁、Li2(Zn0.9Ca0.1)Ti3O8為基板,製作一個堆疊的步階阻抗濾波器,利用IE3D電磁模擬軟體並與實作的測量值比較,可獲得縮小濾波器的面積與較好的頻率響應結果。

    The microwave properties of Li2(Zn0.9Ca0.1)Ti3O8 dielectric ceramic materials are discussed in this paper. By adding different sintering aids CuO and V2O5 respectively, we study the effects of liquid-phase for the microwave properties of Li2(Zn0.9Ca0.1)Ti3O8. The experimental results show that Li2(Zn0.9Ca0.1)Ti3O8 with 0.5 wt% V2O5 addition can efficiently reduce sintering temperature from 1070℃to 980℃, and the dielectric properties the ceramics are dielectric εr about 26.84,Q×f about 35,595 GHz(at 8.82 GHz)and τf about +0.72 ppm/℃.
    In addition, a stacked stepped-impedance resonator filter on FR4, Al2O3 and Li2(Zn0.9Ca0.1)Ti3O8 are fabricated. The experimental measurements demonstrate that the ceramic Li2(Zn0.9Ca0.1)Ti3O8 with added sintering aids can be used for microwave applications for their superior microwave properties of low loss, smaller device area, high Q×f value and high relative dielectric constant substrate.

    第一章 緒論 1 1-1 前言 1 1-2 研究動機、目的與方法 2 第二章 陶瓷介電材料 4 2-1陶瓷材料之微波特性 4 2-1-1 介電性質 4 2-1-2 品質因數: 7 2-1-3 共振頻率溫度係數: 9 2-2 燒結原理 10 2-2-2 液相燒結理論 11 2-3 尖晶石之結構 14 2-4 介電共振器(Dielectric Resonator:DR)原理 15 第三章 微帶線與濾波器之原理 18 3-1 微帶線理論 18 3-1-1 微帶線之結構 18 3-1-2 等效介電常數與特徵阻抗 18 3-2 微帶線的損耗 20 3-2-1 介電損耗(Dielectric loss) 20 3-2-2 導體損耗(Conductor loss) 21 3-2-3 輻射損耗(Radiation loss) 21 3-3 微帶線的不連續效應 22 3-3-1 開路端效應 22 3-3-2 步階阻抗不連續效應 23 3-3-3 直角彎曲效應 24 3-3-4 T型接面效應 25 3-4 濾波器理論 26 3-5 共振器間的耦合形式 27 3-5-1 電場耦合 27 3-6 共振器結構 30 3-7 四分之一波長的阻抗轉換器 34 3-7-1 四分之一波長開路殘段(Open stub) 35 3-7-2 以四分之一波長開路產生傳輸零點之理論分析 35 3-8非對稱式饋入 36 第四章 實驗程序與量測方法 39 4-1起始原料 39 4-2 微波介電材料之製備 39 4-2-1 粉末製備 39 4-2-2 陶瓷體製備 40 4-3 特性分析與量測 42 4-3-1 X-Ray分析(XRD) 42 4-3-2 掃描式電子顯微鏡(SEM) 42 4-3-3 化學成分分析 43 4-3-4 密度之量測 43 4-3-5 微波特性之量測 43 4-3-6 量測步驟 50 4-4 濾波器之製作與量測 50 4-4-1 濾波器規格 50 4-4-2 濾波器實作 53 4-4-3 濾波器量測 53 第五章 實驗結果與探討 54 5-1 Li2(Zn0.9Ca0.1)Ti3O8添加燒結促進劑特性探討 54 5-1-1 未添加燒結促進劑之特性 54 5-1-2 添加燒結促進劑CuO之影響 61 5-1-3 添加燒結促進劑V2O5之影響 73 5-2 濾波器特性探討 84 5-2-1 FR4基板特性探討 85 第六章 結論與未來展望 89 參考文獻 91

    [1] H. M. O'Bryan, et al., "A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss," J. Am. Ceram. Soc., vol. 57, pp. 450-453, 1974.
    [2] G. Wolfram and H. E. Göbel, "Existence range, structural and dielectric properties of ZrxTiySnzO4 ceramics (x+y+z=2)," Mater. Res. Bull., vol. 16, pp. 1455-1463, 1981.
    [3] T. J. Kim, et al., "Microwave Dielectric Properties of (Ba,Sr)O-Sm2O3-TiO2 Ceramics," Ferroelectrics, vol. 333, pp. 259 - 264, 2006.
    [4] R. D. Richtmyer, "Dielectric Resonators," J. Appl. Phys., vol. 10, pp. 391-398, 1939.
    [5] S. B. Cohn, "Microwave Bandpass Filters Containing High-Q Dielectric Resonators," IEEE Trans. Microwave Theory Tech., vol. 16, pp. 218-227, 1968.
    [6] S. George and M. T. Sebastian, "Microwave dielectric properties of novel temperature stable high Q Li2Mg1-xZnxTi3O8 and Li2A1-xCaxTi3O8 (A = Mg, Zn) ceramics," J. Eur. Ceram. Soc., vol. 30, pp. 2585-2592, 2010.
    [7] R. C. Kell, et al., "High-Permittivity Temperature-Stable Ceramic Dielectrics with Low Microwave Loss," J. Am. Ceram. Soc., vol. 56, pp. 352-354, 1973.
    [8] 魏炯權, 電子材料工程: 全華圖書公司, 2001.
    [9] 郭展綱, "燒結促進劑對0.9CaWO4-0.1Mg2SiO4介電陶瓷之影響與應用," 碩士論文, 2004.
    [10] W. J. Huppmann and G. Petzow, "The Elementary Mechanisms of Liquid Sintering," Sintering Processes,Plenum Press, pp. 189-202, 1979.
    [11] D. W. Richerson, Modern Ceramic Engineering: Properties, Processing, and Use in Design, 3rd ed.: Taylor & Francis, 1992.
    [12] K. S. Hwang, Rensselaer Ploytechnic in Troy, 1984.
    [13] J. W. Cahn and R. B. Heady, "Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles," J. Am. Ceram. Soc., vol. 53, pp. 406-409, 1970.
    [14] W. J. Huppmann and G. Petzow, "The Role of Grain and Phase Boundaries in Liquid Phase Sintering," Ber. Bunnsenges Phys. Chem., vol. 82, pp. 308-312, 1978.
    [15] R. M. German, Liquid Phase Sintering. New York: Plenum Press, 1985.
    [16] J. H. Jean and C. H. Lin, "Coarsening of tungsten particles in W-Ni-Fe alloys," Journal of Materials Science, vol. 24, pp. 500-504, 1989.
    [17] V. S. Hernandez, et al., "Stoichiometry, structures and polymorphism of spinel-like phases, Li1.33xZn2-2xTi1+0.67xO4," J. Mater. Chem., vol. 6, pp. 1533-1536, 1996.
    [18] M. S. C. Câmara, et al., "Room temperature photoluminescence of the Li2ZnTi3O8 spinel: Experimental and theoretical study," Int. J. Quantum Chem., vol. 103, pp. 580-587, 2005.
    [19] D. M. Pozar, Microwave engineering, 2nd ed.: Addison-Wesley, 1998.
    [20] D. Kajfez, "Basic Principle Give Understanding of Dielectric Waveguides and Resonators," Microwave System News, vol. 13, pp. 152-161, 1983.
    [21] D. Kajfez and P. Guillon, Dielectric resonators. New York: Artech House, 1989.
    [22] K. C. Gupta, et al., Microstrip Lines and Slotlines, 2nd ed. Boston: Artech House, Inc., 1979.
    [23] M. V. Schneider, "Microstrip Lines for Microwave Integrated Circuits," Bell System Technical Journal, vol. 48, pp. 1421-1444, May 1969.
    [24] H. A. Wheeler, "Transmission-Line Properties of Parallel Strips Separated by a Dielectric Sheet," IEEE Trans. Microwave Theory Tech., vol. 13, pp. 172-185, 1965.
    [25] E. O. Hammerstad, "Equations for Microstrip Circuit Design," in Microwave Conference, 1975. 5th European, 1975, pp. 268-272.
    [26] E. J. Denlinger, "Losses of Microstrip Lines," IEEE Trans. Microwave Theory Tech., vol. 28, pp. 513-522, 1980.
    [27] M. V. Schneider, et al., "Microwave and Millimeter Wave Hybrid Integrated Circuits for Radio Systems," Bell system Technical Journal, vol. 48, pp. 1703-1726, July-August 1969.
    [28] M. Kirschning, et al., "Accurate model for open end effect of microstrip lines," Electronics Letters, vol. 17, pp. 123-125, 1981.
    [29] R. Garg, et al., Microstrip Antenna Design Handbook: Artech House, 2001.
    [30] H. Jia-Sheng and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2099-2109, 1996.
    [31] M. Makimoto and S. Yamashita, "Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators," IEEE Trans. Microwave Theory Tech., vol. 28, pp. 1413-1417, 1980.
    [32] L. Jae-Ryong, et al., "New compact bandpass filter using microstrip λ/4 resonators with open stub inverter," IEEE Microwave Guided Wave Lett., vol. 10, pp. 526-527, 2000.
    [33] L. Sheng-Yuan and T. Chih-Ming, "New cross-coupled filter design using improved hairpin resonators," IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2482-2490, 2000.
    [34] C.-L. Huang and K.-H. Chiang, "Characterization and dielectric behavior of CuO-doped ZnTa2O6 ceramics at microwave frequency," Mater. Res. Bull., vol. 39, pp. 1701-1708, 2004.
    [35] C.-L. Huang, et al., "Influence of V2O5 additions to Ba(Mg1/3Ta2/3)O3 ceramics on sintering behavior and microwave dielectric properties," Mater. Res. Bull., vol. 39, pp. 629-636, 2004.
    [36] D. Kajfez, et al., "Computed Modal Field Distributions for Isolated Dielectric Resonators," IEEE Trans. Microwave Theory Tech., vol. 32, pp. 1609-1616, 1984.
    [37] O. V. Karpova, "On an absolute method of measurement of dielectric properties of a solid using a Π-shaped resonator," Soviet Phys., vol. 1, p. 220, 1959.
    [38] W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," IEEE Trans. Microwave Theory Tech., vol. 18, pp. 476-485, 1970.
    [39] C. Shuh-Han, "Measurements of Microwave Conductivity and Dielectric Constant by the Cavity Perturbation Method and Their Errors," IEEE Trans. Microwave Theory Tech., vol. 33, pp. 519-526, 1985.
    [40] Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," IEEE Trans. Microwave Theory Tech., vol. 33, pp. 586-592, 1985.
    [41] P. Wheless and D. Kajfez, "The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators," in Microwave Symposium Digest, 1985 IEEE MTT-S International, 1985, pp. 473-476.
    [42] B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," Microwave Theory and Techniques, IRE Transactions on, vol. 8, pp. 402-410, 1960.
    [43] Y. Kobayashi and S. Tanaka, "Resonant Modes of a Dielectric Rod Resonator Short-Circuited at Both Ends by Parallel Conducting Plates," IEEE Trans. Microwave Theory Tech., vol. 28, pp. 1077-1085, 1980.
    [44] 李文昌, "燒結促進劑對 0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3介電陶瓷微波特性之影響及其應用," 碩士論文, 2005.
    [45] M. Maeda, et al., "Dielectric Characteristics of Several Complex Oxide Ceramics at Microwave Frequencies," Jpn. J. Appl. Phys., vol. 26, pp. 76-79, 1987.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE