簡易檢索 / 詳目顯示

研究生: 蔡政宏
Tsai, Cheng-Hung
論文名稱: 無硫氰根光敏分子於固態染料敏化太陽能電池光電性質及其長效穩定性之研究
Investigation on photovoltaic performances and light soaking stability of thiocyanate-free Ruthenium(II)sensitizers for solid-state dye sensitized solar cell
指導教授: 陳昭宇
Chen, Peter
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 147
中文關鍵詞: 固態染料敏化太陽能電池無硫氰根光敏分子光照穩定度
外文關鍵詞: solid-state dye sensitized solar cell (SDSC), thiocyanate-free Ruthenium(II) sensitizers (TFRSs), light soaking stability
相關次數: 點閱:92下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的為研究不同的三牙配位基取代染料硫氰根後,應用於固態電池的效率及光照穩定性之分析。本研究選用具有良好效率表現及穩定性的Z907染料,以及四種不同的無硫氰根染敏分子(Thiocyanate-free Ruthenium sensitizers ,TFRS),分別為Jou-2186、Jou-2191、Pei-1115、Pei-1094,將五種染料應用於固態染敏系統並分析其電性表現。TFRS受限於本身結構易堆疊,因此需要添加共吸附劑,但此舉又會抑制染料吸附量,因此需在兩相反趨勢間取得效率最佳值。利用小分子酸後處理修飾TiO2表面空隙,以及加入p型參雜使Spiro部分氧化後,可使Jou-2186元件效率達3.2%,接近Z907元件3.5%的效率表現。TFRS和Z907經光照測試後,亦證實了Z907的光照穩定性無論在開放式光劣化測試或封閉式光照穩定系統中皆比TFRS弱,顯示硫氰根的取代確實助於提升元件光照穩定度。

    In this study, we investigated the photovoltaic performances and light soaking stability of thiocyanate-free Ruthenium(II) sensitizers(TFRS) for solid-state dye sensitized solar cell. The photovoltaic performance for Z907 dye was better than TFRS, with higher dye adsorption amount and longer electron lifetime. After light soaking aging, TFRS showed better light soaking stability to Z907. The result indicated that replacing the thiocyanate ligand could help increasing light soaking stability.

    中文摘要 i Extended Abstract ii 致謝 x 表目錄 xv 圖目錄 xvii 第一章 緒論 1 1.1 前言 1 1.2 光伏效應(Photovoltaic effect)及界面能帶特性 2 1.2.1光伏效應(Photovoltaic effect) 2 1.2.2 無機半導體太陽能電池界面 3 1.3 實驗動機與目的 7 第二章 基礎理論 10 2.1 染料敏化太陽能電池 10 2.1.1液態染料敏化太陽能電池文獻回顧 10 2.1.2 固態染料敏化太陽能電池文獻回顧 16 2.2太陽能電池原理 24 2.2.1染敏太陽能電池工作原理 24 2.2.2空氣質量(Air Mass)及太陽能頻譜 26 2.2.3轉換效率計算 28 2.2.4 量子效益 30 2.3 無硫氰根光敏分子文獻回顧 32 2.3.1 無硫氰根光敏分子理論發展背景 32 2.3.2 無硫氰根光敏分子染料結構與取代基 36 2.4 染料敏化太陽能電池的長效穩定度文獻回顧 41 2.4.1染敏太陽能電池的長效穩定量測理論背景 41 2.4.2影響染敏太陽能電池各層結構長效穩定的因素 43 2.4.3 固態染敏太陽能電池的長效穩定度 46 第三章 實驗方法與分析儀器原理 50 3.1實驗藥品與儀器 50 3.1.1 實驗藥品 50 3.2 實驗設計與流程 52 3.3元件設計與製作 53 3.3.1液態染敏電池製備 53 3.3.2固態染敏電池製備 55 3.3.4 固態染敏元件設計-標準元件及穩定度測試元件 58 3.4染敏元件特性分析 59 3.4.1電池效率量測(J-V特性曲線量測) 59 3.4.2 IPCE量測 60 3.4.3 暫態量測(Transient) 60 3.4.4 吸收與反射光譜量測(UV-vis) 61 第四章 結果與討論 62 4.1 TFRS之光電化學性質探討 62 4.2固態染敏電池電性探討 68 4.2.1 TiO2奈米顆粒對元件效率之影響 68 4.2.2 染料對元件效率之影響 80 4.2.3 小分子酸後處理對元件效率之改善 90 4.2.4 Spiro-MeOTAD之P-type doping對效率之改善 95 4.2.5 Z907及TFRS應用於SDSC結論 101 4.3 光照環境之元件長效穩定度探討 102 4.3.1 測試環境及參數 102 4.3.2 開放式元件光照劣化分析 104 4.3.3 開放式元件之光照劣化實驗結論 116 4.4 封閉式元件之光照穩定性 117 4.4.1染料於封閉式元件之光照穩定性探討 117 4.4.2 密封式元件之電性探討 120 4.4.3 封閉式元件光照穩定度結論 127 4.5 Supporting Information-液態染敏電池電性探討 128 4.5.1 不同TiO2醬料對元件效率之影響 128 4.5.2 不同TiO2膜厚對元件效率之影響 132 4.5.3 不同電解液對元件效率之影響 137 第五章 結論與未來展望 140 第六章 參考文獻 142

    1. O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
    2. Wang, P., et al., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater, 2003. 2(6): p. 402-7.
    3. Hagfeldt, A. and M. Grätzel, Molecular Photovoltaics. Accounts of Chemical Research, 2000. 33(5): p. 269-277.
    4. Grätzel, M., The advent of mesoscopic injection solar cells. Progress in Photovoltaics: Research and Applications, 2006. 14(5): p. 429-442.
    5. Nazeeruddin, M.K., E. Baranoff, and M. Grätzel, Dye-sensitized solar cells: A brief overview. Solar Energy, 2011. 85(6): p. 1172-1178.
    6. Verma, S., et al., Efficient Charge Separation in TiO2 Films Sensitized with Ruthenium(II)–Polypyridyl Complexes: Hole Stabilization by Ligand-Localized Charge-Transfer States. Chemistry – A European Journal, 2011. 17(5): p. 1561-1568.
    7. Robson, K.C., et al., Design and development of functionalized cyclometalated ruthenium chromophores for light-harvesting applications. Inorg Chem, 2011. 50(12): p. 5494-508.
    8. Hu, F.-C., et al., Geometrical Isomerism of RuII Dye-Sensitized Solar Cell Sensitizers and Effects on Photophysical Properties and Device Performances. ChemPhysChem, 2014. 15(6): p. 1207-1215.
    9. Wang, M., et al., Surface Design in Solid-State Dye Sensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance. Advanced Functional Materials, 2009. 19(13): p. 2163-2172.
    10. Bequerel, E., Compt. Rend. Acad. Sci, 1839. 87(9): p. 145.
    11. Tsai, C.-H., Nanocrystalline Anatase Titanium Oxide Prepared from Nanotubes Precursor for Anode of Dye-sensitized solar Cells,2004: p. 10.
    12. Luth, H., Solid Surfaces, Interfaces, and Films. Springer-Verlag Berlin Heidelberg, 2001: p. 384.
    13. Jiang, K.J., et al., A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl-conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells. Chem Commun (Camb), 2006(23): p. 2460-2.
    14. Péchy, P., et al., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society, 2001. 123(8): p. 1613-1624.
    15. Chen, C.Y., et al., A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angew Chem Int Ed Engl, 2006. 45(35): p. 5822-5.
    16. Rehm, J.M., et al., Femtosecond Electron-Transfer Dynamics at a Sensitizing Dye−Semiconductor (TiO2) Interface. The Journal of Physical Chemistry, 1996. 100(23): p. 9577-9578.
    17. Hara, K., et al., A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chemical Communications, 2001(6): p. 569-570.
    18. Hagberg, D.P., et al., Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications. Journal of the American Chemical Society, 2008. 130(19): p. 6259-6266.
    19. Moon, S.-J., et al., Highly Efficient Organic Sensitizers for Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2009. 113(38): p. 16816-16820.
    20. Zeng, W., et al., Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chemistry of Materials, 2010. 22(5): p. 1915-1925.
    21. Cherian, S. and C.C. Wamser, Adsorption and Photoactivity of Tetra(4-carboxyphenyl)porphyrin (TCPP) on Nanoparticulate TiO2. The Journal of Physical Chemistry B, 2000. 104(15): p. 3624-3629.
    22. Yella, A., et al., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011. 334(6056): p. 629-34.
    23. Bach, U., et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998. 395(6702): p. 583-585.
    24. Schmidt-Mende, L., S.M. Zakeeruddin, and M. Grätzel, Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye. Applied Physics Letters, 2005. 86(1): p. 013504.
    25. Wang, M., et al., Enhanced-Light-Harvesting Amphiphilic Ruthenium Dye for Efficient Solid-State Dye-Sensitized Solar Cells. Advanced Functional Materials, 2010. 20(11): p. 1821-1826.
    26. Wang, M., et al., Efficient and stable solid-state dye-sensitized solar cells based on a high-molar-extinction-coefficient sensitizer. Small, 2010. 6(2): p. 319-24.
    27. Wang, M., et al., High efficiency solid-state sensitized heterojunction photovoltaic device. Nano Today, 2010. 5(3): p. 169-174.
    28. Wang, M., et al., High-Performance Liquid and Solid Dye-Sensitized Solar Cells Based on a Novel Metal-Free Organic Sensitizer. Advanced Materials, 2008. 20(23): p. 4460-4463.
    29. Jiang, X., et al., Highly Efficient Solid-State Dye-Sensitized Solar Cells Based on Triphenylamine Dyes. Advanced Functional Materials, 2011. 21(15): p. 2944-2952.
    30. Burschka, J., et al., Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J Am Chem Soc, 2011. 133(45): p. 18042-5.
    31. Grätzel, M., Photoelectrochemical cells. Nature, 2001. 144.
    32. http://pvcdrom.pveducation.org/CELLOPER/QUANTUM.HTM.
    33. Wadman, S.H., et al., Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells. Chemical Communications, 2007(19): p. 1907.
    34. Bessho, T., et al., New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications. Journal of the American Chemical Society, 2009. 131(16): p. 5930-5934.
    35. Wu, K.L., et al., Development of thiocyanate-free, charge-neutral Ru(II) sensitizers for dye-sensitized solar cells. Chem Commun (Camb), 2010. 46(28): p. 5124-6.
    36. Singh, S.P., et al., Efficient thiocyanate-free sensitizer: a viable alternative to N719 dye for dye-sensitized solar cells. Dalton Trans, 2012. 41(25): p. 7604-8.
    37. Kisserwan, H. and T.H. Ghaddar, Enhancement of photocurrent in dye sensitized solar cells incorporating a cyclometalated ruthenium complex with cuprous iodide as an electrolyte additive. Dalton Trans, 2011. 40(15): p. 3877-84.
    38. Chou, C.C., et al., Ruthenium(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. Angew Chem Int Ed Engl, 2011. 50(9): p. 2054-8.
    39. Islam, A., S.P. Singh, and L. Han, THIOCYANATE-FREE, PANCHROMATIC RUTHENIUM (II) TERPYRIDINE SENSITIZER HAVING A TRIDENTATE DIETHYLENETRIAMINE LIGAND FOR NEAR-IR SENSITIZATION OF NANOCRYSTALINE TiO2. Functional Materials Letters, 2011. 04(01): p. 21-24.
    40. Hsu, C.-W., et al., Ru(ii) sensitizers with a tridentate heterocyclic cyclometalate for dye-sensitized solar cells. Energy & Environmental Science, 2012. 5(6): p. 7549.
    41. Hinsch, A., et al., Long-term stability of dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications, 2001. 9(6): p. 425-438.
    42. Sommeling, P.M., et al., Long-term stability testing of dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1-3): p. 137-144.
    43. Kuang, D., et al., High-Efficiency and Stable Mesoscopic Dye-Sensitized Solar Cells Based on a High Molar Extinction Coefficient Ruthenium Sensitizer and Nonvolatile Electrolyte. Advanced Materials, 2007. 19(8): p. 1133-1137.
    44. Senevirathna, M., et al., Stability of the SnO2/MgO dye-sensitized photoelectrochemical solar cell. Solar Energy Materials and Solar Cells, 2007. 91(6): p. 544-547.
    45. Kroon, J.M., et al., Nanocrystalline dye-sensitized solar cells having maximum performance. Progress in Photovoltaics: Research and Applications, 2007. 15(1): p. 1-18.
    46. Greijer Agrell, H., J. Lindgren, and A. Hagfeldt, Degradation mechanisms in a dye-sensitized solar cell studied by UV–VIS and IR spectroscopy. Solar Energy, 2003. 75(2): p. 169-180.
    47. Lu, H.-L., et al., The degradation of dye sensitized solar cell in the presence of water isotopes. Solar Energy Materials and Solar Cells, 2011. 95(7): p. 1624-1629.
    48. Hagfeldt, E.F.a.A., Are dye-sensitized nano-structured solar cell stable? An overview of device testing and component analyses. International Journal of Photoenergy, 2004. 6: p. 127-140.
    49. Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003. 4(2): p. 145-153.
    50. Greijer, H., J. Lindgren, and A. Hagfeldt, Resonance Raman Scattering of a Dye-Sensitized Solar Cell:  Mechanism of Thiocyanato Ligand Exchange. The Journal of Physical Chemistry B, 2001. 105(27): p. 6314-6320.
    51. Muthuraaman, B., et al., An investigation on the performance of a silver ionic solid electrolyte system for a new detergent-based nanocrystalline dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2008. 92(12): p. 1712-1717.
    52. Salbeck, J., et al., Low molecular organic glasses for blue electroluminescence. Synthetic Metals, 1997. 91(1–3): p. 209-215.
    53. Olsen, E., G. Hagen, and S. Eric Lindquist, Dissolution of platinum in methoxy propionitrile containing LiI/I2. Solar Energy Materials and Solar Cells, 2000. 63(3): p. 267-273.
    54. Mishra, A., et al., A Thiophene-Based Anchoring Ligand and Its Heteroleptic Ru(II)-Complex for Efficient Thin-Film Dye-Sensitized Solar Cells. Advanced Functional Materials, 2011. 21(5): p. 963-970.
    55. Nezu, S., et al., Light Soaking and Gas Effect on Nanocrystalline TiO2/Sb2S3/CuSCN Photovoltaic Cells following Extremely Thin Absorber Concept. The Journal of Physical Chemistry C, 2010. 114(14): p. 6854-6859.
    56. Li, Q., et al., High-temperature solid-state dye-sensitized solar cells based on organic ionic plastic crystal electrolytes. Adv Mater, 2012. 24(7): p. 945-50.
    57. Rong, Y., et al., Monolithic all-solid-state dye-sensitized solar module based on mesoscopic carbon counter electrodes. Solar Energy Materials and Solar Cells, 2012. 105: p. 148-152.
    58. Zakeeruddin, S.M., et al., Design, Synthesis, and Application of Amphiphilic Ruthenium Polypyridyl Photosensitizers in Solar Cells Based on Nanocrystalline TiO2 Films. Langmuir, 2002. 18(3): p. 952-954.
    59. L. V. Mann, K., et al., Tetranuclear grid-like copper(II) complexes with pyrazolate bridges: syntheses, structures, magnetic and EPR spectroscopic properties. Journal of the Chemical Society, Dalton Transactions, 1999(3): p. 339-348.
    60. Psillakis, E., et al., A dinuclear double-helical complex of potassium ions with a compartmental bridging ligand containing two terdentate N-donor fragments. Chemical Communications, 1997(5): p. 479-480.
    61. S. Fleming, J., et al., Complexes of the potentially hexadentate ligand bis{3-[6-(2,2[prime or minute]-bipyridyl)]pyrazol-1-yl}hydroborate with representative s-, p-, d- and f-block metal ions: factors promoting formation of mononuclear or double-helical dinuclear complexes. Journal of the Chemical Society, Dalton Transactions, 1998(4): p. 537-544.
    62. Barnes, P.R.F., et al., Interpretation of Optoelectronic Transient and Charge Extraction Measurements in Dye-Sensitized Solar Cells. Advanced Materials, 2013. 25(13): p. 1881-1922.
    63. Wang, Q., et al., Enhancement of the Performance of Dye-Sensitized Solar Cell by Formation of Shallow Transport Levels under Visible Light Illumination. The Journal of Physical Chemistry C, 2008. 112(17): p. 7084-7092.
    64. Wang, Q., et al., Correction to “Enhancement of the Performance of Dye-Sensitized Solar Cell by Formation of Shallow Transport Levels under Visible Light Illumination”. The Journal of Physical Chemistry C, 2008. 112(28): p. 10585-10585.
    65. Yum, J.H., et al., Effect of coadsorbent on the photovoltaic performance of squaraine sensitized nanocrystalline solar cells. Nanotechnology, 2008. 19(42): p. 424005.
    66. Li, J., et al., Effect of chenodeoxycholic acid (CDCA) additive on phenothiazine dyes sensitized photovoltaic performance. Science China Chemistry, 2011. 54(4): p. 699-706.
    67. Snaith, H.J. and M. Grätzel, Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells. Applied Physics Letters, 2006. 89(26): p. -.
    68. Kalyanasundaram, K., DYE-SENSITIZED SOLAR CELLS.
    69. Fantacci, S., et al., Electronic and Optical Properties of the Spiro-MeOTAD Hole Conductor in Its Neutral and Oxidized Forms: A DFT/TDDFT Investigation. The Journal of Physical Chemistry C, 2011. 115(46): p. 23126-23133.
    70. ROSSIER-ITEN, N., Solid hybrid dte-sensitized solar cells : new organic materials, charge recombination and stability 2006.
    71. Dualeh, A., et al., Temperature Dependence of Transport Properties of Spiro-MeOTAD as a Hole Transport Material in Solid-State Dye-Sensitized Solar Cells. ACS Nano, 2013. 7(3): p. 2292-2301.
    72. Li, Q., et al., High-Temperature Solid-State Dye-Sensitized Solar Cells Based on Organic Ionic Plastic Crystal Electrolytes. Advanced Materials, 2012. 24(7): p. 945-950.
    73. Pathak, S.K., et al., Towards Long-Term Photostability of Solid-State Dye Sensitized Solar Cells. Advanced Energy Materials, 2014. 4(8): p. n/a-n/a.
    74. Harikisun, R. and H. Desilvestro, Long-term stability of dye solar cells. Solar Energy, 2011. 85(6): p. 1179-1188.
    75. Nour-Mohhamadi, F., et al., Determination of the Light-Induced Degradation Rate of the Solar Cell Sensitizer N719 on TiO2 Nanocrystalline Particles. The Journal of Physical Chemistry B, 2005. 109(47): p. 22413-22419.
    76. Cappel, U.B., T. Daeneke, and U. Bach, Oxygen-Induced Doping of Spiro-MeOTAD in Solid-State Dye-Sensitized Solar Cells and Its Impact on Device Performance. Nano Letters, 2012. 12(9): p. 4925-4931.
    77. Konstantinou, I.K. and T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 2004. 49(1): p. 1-14.
    78. Cecchet, F., et al., Solvent Effects on the Oxidative Electrochemical Behavior of cis-Bis(isothiocyanato)ruthenium(II)-bis-2,2‘-bipyridine-4,4‘-dicarboxylic Acid. The Journal of Physical Chemistry B, 2002. 106(15): p. 3926-3932.

    下載圖示 校內:立即公開
    校外:2018-08-27公開
    QR CODE